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Abstract

We assume the multitape real-time Turing machine as a formal model for parallel real-time
computation. Then, we show that, for any positive integer k, there is at least one language Ly,
which is accepted by a k-tape real-time Turing machine, but cannot be accepted by a (k — 1)-
tape real-time Turing machine. It follows therefore that the languages accepted by real-time
Turing machines form an infinite hierarchy with respect to the number of tapes used. Although
this result was previously obtained in [1], our proof is considerably shorter, and explicitly builds
the languages L.

The ability of the real-time Turing machine to model practical real-time and/or parallel
computations is open to debate. Nevertheless, our result shows how a complexity theory based
on a formal model can draw interesting results that are of more general nature than those
derived from examples. Thus, we hope to offer a motivation for looking into realistic parallel
real-time models of computation.

Keywords: Real-time computation, parallel computation, multitape Turing machines, compu-
tational complexity.

1 Introduction
Some time ago, one of the authors received a challenge [18]:

Can one find any problem that is solvable by an algorithm that uses k processors, k > 1,
and is not solvable by a sequential algorithm, even if this sequential algorithm runs on
a machine whose processor is k times faster than each of the k processors used by the
parallel implementation?

In terms of the conventional theory of parallel algorithms, this question is, of course, meaningless.
Indeed, it is standard to assume (in analyses of running time) that each processor on a parallel
computer is as fast as the single processor on the sequential computer used for comparison. However,
the question does make sense in practice. Besides, questions of this kind are crucial for the process
of developing a parallel real-time complexity theory. Indeed, a meaningful such theory should be
invariant to secondary issues like the speed of some particular machine. Thus, an answer to the
above question is also important from a theoretical point of view (specifically, from the point of
view of parallel real-time complexity theory).
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There are some noteworthy results in the area of parallel algorithms for real-time computations
[3, 4, 5, 6, 7, 10, 11, 9, 16], but none appears to address the above challenge. A positive answer
to the question for k¥ = 2 is provided by (a slightly modified version of) the pursuit and evasion
on a ring example presented in [2]. In this version, an entity A is in pursuit of another entity
B on the circumference of a circle, such that A and B move at the same speed; clearly, A never
catches B. Now, if two entities C' and D are in pursuit of entity B on the circumference of a
circle, then C' and D always catch B, even if C and D move at 1/z the speed of A (and B),
z > 1. A computational analog of this example consists of two streams of input, both of them
having to be monitored in order to solve a problem. Thanks to parallelism, two (slow) processors
C and D operating simultaneously invariably succeed in completing the computation, whereas a
single processor A which is twice as fast as either C' or D always fails. This example can be easily
extended to cases where k > 2.

One should note that most of the areas where superunitary behavior is manifested involve a real-
time component. However, real-time computations received less attention from theoreticians. Even
the term real-time is used by the complexity theorists in a somewhat different manner than in the
real-time systems community: The systems researchers use the term to refer to those computations
in which the notion of correctness is linked to the notion of time [21]. By contrast, theorists often
use real-time as a synonym for on-line. As a consequence, there is a huge body of substantial
theoretical work on on-line complexity [14], but real-time computations received considerably less
attention. Indeed, there are few (sequential) formal models for such computations, and, to our
knowledge, no parallel model at all. Therefore, a consistent parallel complexity theory of real-time
systems has first to overcome this absence.

This paper does not attempt to introduce a new model. Instead, we shall consider an existing
sequential model, and see whether variants of this model are suitable for modeling parallel compu-
tations. Specifically, we consider what appears to be the oldest model for real-time computations,
namely the real-time Turing machine introduced in [22]. Machines belonging to this model, and
the languages accepted by them, called real-time definable languages, were further studied in many
papers, e.g., [1, 12, 17, 19, 20]. The model used is a deterministic one, but nondeterministic ex-
tensions were also studied, like the real-time Turing machines with restricted nondeterminism [13],
and nondeterministic real-time Turing machines [8] (the languages accepted by the latter model
being called quasi-real-time languages).

Although Turing machines are essentially sequential models, because of their finite control, the
model offers the possibility of multiple tapes. A multitape machine is allowed to perform elementary
actions on all of its tapes in parallel. Therefore, one can arguably call the real-time Turing machine
a model for real-time parallel computation.

In this setting, an interesting problem related to superunitary behavior is whether an addition
to the number of tapes of a real-time Turing machine increases its computational power. A partial
answer was given in [17], where it is shown that a 2-tape real-time Turing machine is strictly more
powerful than a 1-tape one. The general problem is addressed in [1], where it is shown that, for any
positive integer k, a k-tape real-time Turing machine is strictly more powerful than a (k — 1)-tape
one. The proof of this result is based on the notion of overlap, and it is quite long. In addition,
the languages Ly recognizable in real time by a k-tape Turing machine but not by a (k — 1)-tape
one are constructed implicitly, as languages accepted by specific Turing machines.

We offer a new proof of this result. By contrast with [1], our proof is considerably shorter
and intuitive, and the languages Lj are explicitly constructed. Moreover, we identify some open
questions in the area of real-time parallel computation that are suggested by the result of this
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The scope of this paper is therefore twofold: First, we give an improved result in the theory of
real-time Turing machines. Second, we intend to open a discussion on formal models for real-time
parallel computations. Granted, one can justifiably question our claim that Turing machines offer
a realistic model for such computations. Moreover, as noted above, arguments can be made that
the real-time Turing machine is not even a good enough model for practical real-time computations
(that is, real-time computations as seen by the systems community) in general, no matter whether
those computations are sequential or parallel. Therefore, we don’t intend to suggest that one should
stick to the real-time Truing machine. Instead, we emphasize the need for a realistic parallel model
of real-time computations, by showing in this paper that the use of a formal model leads to more
general results than those drawn from examples. To our knowledge, no work in the direction of a
realistic model for parallel real-time computations exists to date. We hope that this paper offers a
motivation for such work.

We present in the next section a concise introduction to real-time Turing machines and real-time
definable languages. Then, in section 3, we show that real-time Turing machines form an infinite
hierarchy with respect to the number of tapes used. We conclude in section 4.

2 Real-Time Turing Machines

This section is provided only for completeness. The reader familiar with real-time Turing machines
may skip directly to section 3.

Given some alphabet A, the set A is defined recursively by A' = A, and A® = A x A*~! for
t> 1.

We assume that the reader is familiar with the concept of a Turing machine; therefore we do
not define the terms that are usually covered in a textbook on such a subject (e.g., [L5]). A Turing
machine M is said to accept some language L if, for any input string w, M stops (that is, M reaches
the halt state h) iff w € L [15]. The empty word is denoted by A.

We shall use the definition of real-time Turing machines presented in [19]:

Definition 2.1 [19]

1. For some constant k, k > 1, an on-line Turing machine is a deterministic (k + 1)-tape Turing
machine (with & working tapes and one input tape) M = (K, K,, %, W, d, so), where K, UK,
is the set of states, not containing the halt state h, sg is the initial state, 3 is the input
alphabet, W is the alphabet of working symbols, containing the blank symbol #, and ¢ is the
state transition function, d : (K, x & x W¥)U (K, x W*) — (K,UK,U{h}) x ({R, L, N}* x
W*). The head on the input tape is allowed to move only to the right.

A configuration of an on-line k-tape Turing machine is a (k + 2)-tuple C =
(¢:t, 210191, ..., TrakYx), Where ¢ is a state, ¢ € X* is the (not yet considered) content of
the input tape, for any ¢, 1 < ¢ < k, x;a,;y; is the content of the i-th working tape, and a; is
the symbol that is currently scanned by the head of tape i. If a configuration C; yields an-
other configuration Cy, we write C Fas Co. As usual, -}, denotes the transitive and reflexive
closure of ;.

The set of states is divided into two subsets: the set of polling states K, and the set of
autonomous states K,. All the states that lead to h in one step are polling states, and
the initial state is a polling state. In addition, the relation s has the following property:
if g € Ky, ¢" € K,, and ¢ € K, UK,, then (q,abv,z1,...,2;) Fu (¢, bv,20,...,2}),
(¢",abv,z1,...,x) Faur (¢'sabv, 2, ... 2)), and (g, A\, z1,...,2%) b (B, A 20,0, ).



M accepts the input w iff (so, w,z1,...,25) Fi; (b, A\, z1,...,2k), where 7 > 0 is called the
running time of M on w.

2. A real-time Turing machine is an on-line Turing machine for which K, = (). A language
accepted by such a machine is called a real-time definable language.

a

In other words, an on-line Turing machine has a unidirectional input tape. Therefore, it has no
knowledge about further input data. Between reading two input symbols, such a machine is allowed
to go into a number of autonomous states, where it performs some work without considering any
input. In addition to these requirements, a real-time Turing machine has no autonomous state, it
being forced to consume an input datum at every step.

Definition 2.2 A nondeterministic real-time Turing machine is a machine that is identical to the
one defined in definition 2.1, except that § C ((K, x £ x Wk) U (K, x Wk)) x (K, U K, U{h}) x
({R,L,N}* x W¥)). The languages accepted by nondeterministic real-time Turing machines are
called quasi-real-time languages [8]. O

3 k Tapes are More Powerful than £ — 1 Tapes

In the following, given a word u, u” denotes the reversal of u. For a fixed positive integer k£ and
given some alphabet X, and two symbols $ and @, such that $,@ ¢ X, let us consider the language

Ly = {SwiSwoSws$...8wr@Qu” |wy, ..., wg,u € XF,
there exists some i, 1 < ¢ <k, such that u = w;}. (1)

Let w be a word in Ly, w = $w; SwoSws$...8w,Qu". We denote by w;; the j-th symbol of the
subword wj, 1 <14 <k, and by uj and u; the j-th symbol of v" and wu, respectively. The length of
some word z is denoted by |z|.

Lemma 3.1 There is a k-tape (not counting the input tape) deterministic real-time Turing ma-
chine, with the working alphabet ¥ U {$,Q} that accepts Ly.

Proof.  Such a machine M works as follows. While reading the input w, it writes each subword
$w;, 1 < 1 < k, on tape i. That is, it starts by writing the initial $ symbol on the first tape.
Then, when the head on the input tape reads some symbol w;;, M writes w;; on its i-th tape,
and advances that tape’s head to the right. When the $ symbol that terminates the subword w; is
read, M moves the head of tape i one cell to the left, and, at the same time, writes $ on tape 7 + 1
(provided that i < k — 1). Clearly, writing the word w; requires precisely |w;| time.

After the @ symbol is read, M starts comparing simultaneously the currently read symbol u;
with the subwords stored on each of its k tapes. For any tape i, if u; = w;j, then the machine
advances the head of tape 7 one cell to the left; otherwise, it writes @ on tape %, and never moves
the head of that tape afterwards. This step also takes |u| time.

At the end of the input, on a tape ¢ for which u = w;, it is clear that the head advances each
time an input symbol is read, and when the input is exhausted, the head points to the initiating $
sign. On the other hand, assume that |u| > |w;|. Then, after exhausting the word w;, M eventually
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compares $§ with some symbol in ¥, which are obviously different. Then, it writes @ on tape ¢ and
never moves that head. Analogously, if |u| < |w;|, then the head points to some symbol from w;
when the end of the input is reached, which is not $. Finally, on those tapes ¢ where there is a
j such that u; # w;;, M writes @ and subsequently never moves the head (as mentioned in the
previous paragraph). Therefore, at the end of the input, M accepts the input iff the head of at
least one tape points to a $ sign. As shown above, this happens iff there is some subword w; such
that ©v = w;.

Moreover, it is clear that M reads one input symbol in each state, therefore M is a real-time
Turing machine. O

Lemma 3.2 There is no (k — 1)-tape (not counting the input tape) deterministic real-time Turing
machine that accepts Ly, even if the working alphabet of M is (X U {$,@}\)*" for some k' that
depends on k.

Proof. Assume that there exists such a machine, and denote it by M. M has k—1 tapes but there
are k subwords w;. However, all the subwords have to be stored somewhere, since u can match any
of them. Let the length of the input word be n.

We ignore for the moment the way in which the k£ subwords are written on the tapes of M, but
focus instead on the computation that M has to perform when 4" is read. When reading a symbol
uj, 1 <j < |u|, M has to compare this symbol with all the symbols w;j, where 1 < i < k, with
|w;| > |ul|, and j' = |u| — j, in exactly one step. The only way of achieving this is that the cells
immediately accessible on the k£ — 1 tapes of M must contain all the symbols w;;,. That is, for any
J, 1 <7 <u|, at the moment when the symbol @ is read, there is some tape cell that contains at
least the symbols wyj and wy,; for some m and I, where 1 <1 < m < k and j' = |u| — j. When
a symbol wy,; is written in the same tape cell as some symbol w;;:, we say that M superimposes
Wyt [OVer wyjr].

Since there are only k — 1 tapes, and the maximum capacity of a tape cell is k' symbols, where
both k£ and k' are constant with respect to n, the above result implies that there is at least one
word (let it be wy,) in which p symbols are superimposed, where p = O(n). Let these symbols be
Winjy , Wmyjsys - - - » Wmy,, and note that, before superimposing any symbol, M has to know the length
of wy,. Indeed, a symbol wp,j, is superimposed over some symbol wy,, where |wp,| — jq = |w| — o.
Therefore, wy,;,, 1 < ¢ < p, can be superimposed only after the end of wy, is reached. However, it
is immediate that M can superimpose in one step at most k¥'(k—1) symbols. That is, after reaching
the end of wy,, M needs at least p/(k'(k — 1)) steps in order to complete the processing of wy,.
But consider now those input strings for which |wy,41| + -+ - + |wg| < p/(K'(k — 1)). Clearly, since
M is a real-time Turing machine, it has to consume an input symbol at each step. However, there
are more steps than input symbols. That is, M cannot complete the processing of w,, before @ is
read, and therefore it cannot compare u with all the subwords wi, ..., wy in |u| steps, which is in
contradiction to our initial assumption that M is real-time.

We have yet to justify some facts in order to complete the proof. First and most important,
we assumed that at most &’ symbols can be written on a tape cell, with k¥’ constant with respect
to the length of the current input. This is clearly true, even if the symbols are written using some
(however clever) encoding, since the working alphabet of M cannot depend on the input. Indeed, it
is immediate that (a) all the subwords w; of w have to be stored somewhere on the working tapes,
and (b) in the general case, once a symbol u} of u”, 1 < j < |ul, has been read, it must be compared
in one step with all the corresponding symbols in w;, 1 < ¢ < k (a real-time Turing machine is also
on-line and, in addition, there are no autonomous states). Since only k& — 1 cells of the working



tapes can be read in one step, it follows that, no matter how the input is encoded on the working
tapes, two symbols wy,; and wyj, 1 < m <1 <k, must coexist (whichever the meaning of “coexist”
is) in the same tape cell. This is achievable in real-time only if all the symbols between w,; and
wy; are stored without moving the head of the tape storing wy,; and w;; more than one cell. As
shown above, this is impossible, and this impossibility is invariant with the encoding/compression
used—in fact, the requirement to move all the heads by more than one cell is given solely by the
fact that the number of symbols between w;,; and w;; on the input tape is not bounded by any
constant and can be determined only after M reads w;;.

Then, note that M is deterministic. Moreover, while considering the subword wy,, M cannot
determine the length of the subsequent words, since it is on-line. That is, the choice of m is
independent of the not yet considered part of the input, and hence the above choice of the words
Wm+1, - - -, Wi (more precisely, the choice of their length) is justified.

Finally, we also implicitly used a fact related to the one in the previous paragraph. Indeed,
one can say that, when the choice of m turns out to be wrong (in the sense that there is no input
to consume while M superimposes the symbols wyy,;,), M can return to a previous state and try
another choice. However, the wrong choice manifests itself when M reads the symbol @, and then it
has no time to reverse the computation, since it needs the remaining |u| steps to read and compare
the subword |u.

Note that, in fact, the job of M would have to be even harder. Specifically, M would have
to remember the indices of the symbols whose superimposing is postponed until the end of the
current subword is reached, and this implies extra space and extra state transitions. However, we
showed some facts that are enough to prove the impossibility of L;’s acceptance by M, and we
hence completed the proof. O

Lemma 3.3 There is a one-tape (not counting the input tape) nondeterministic real-time Turing
machine that accepts Ly.

Proof.  The machine nondeterministically guesses that subword w; that matches u, writes it on
its working tape, and then compares u with the stored subword. O
The main result of our paper follows immediately from lemmas 3.1, 3.2, and 3.3:

Theorem 3.4 For any positive integer k, there is at least one (quasi-real-time) language which is
accepted by a k-tape real-time Turing machine, but cannot be accepted by a (k — 1)-tape real-time
Turing machine. Therefore, the languages accepted by k-tape real-time Turing machines form an
infinite hierarchy with respect to k. O

4 Conclusions

We showed in this paper that, for any positive integer k, a k-tape real-time Turing machine is
strictly more powerful than a (k — 1)-tape one.

Of course, an answer to the challenge articulated at the start of section 1 depends on one’s
definition of the word “solvable”. However, if one replaces “algorithm” by “Turing machine” and
“processor” by “tape” (since this is the only thing in a Turing machine that can grow as desired),
then theorem 3.4 also represents a positive answer to the above challenge. Indeed, even if we
restrict the working alphabet of a k-tape real-time Turing machine to the input alphabet 3, but
allow the one-tape Turing machine to use vF as working alphabet, k' > k, hence giving to the



unique working tape a k’-fold improvement in performance, the one-tape Turing machine is still
not able to handle the acceptance of the language described in equation (1).

In this context, it is also evident that the very question of whether a k-tape Turing machine is
equivalent in some sense to a k-processor computer is itself debatable. However, it is hoped that a
discussion of this subject can lead to the development of a more realistic model for parallel real-time
computations. Thus, we conclude this paper with a new challenge: Either prove or disprove the
mentioned equivalence (between a real-time multi-processor machine and a real-time multi-tape
Turing machine). We believe in fact that there is no such equivalence—not because of differences
between a tape and a processor, but because the differences among the definitions of “real-time”
across the computing community instead, as mentioned in the introductory section. However, even
if the two models of computation are found not to be equivalent (as we believe to be the case), they
still share some properties, since both of them model parallelism (if not real-time) in some sense.
Then, an alternate question to the one above is: Do these models share the property of forming
infinite hierarchies? That is, is there a (nontrivial) infinite hierarchy, this time with respect to
the number of processors on a multi-processor abstract machine, which is similar in spirit to the
hierarchy found in this paper for the real-time Turing machines? Of course, before being able to
answer such a question at all, one must find that realistic parallel real-time model itself. We hope
that this paper offers a motivation for such a pursuit.

One final remark related to (and in support of) the above challenge concerns the languages Ly
developed in section 3. One can note that each of these languages models a search for some word
(u) in a set of subwords ({w1,...,wg}). Such a processing is commonplace in many algorithms of
practical importance. Therefore, finding an equivalent hierarchy with respect to a more realistic
parallel model would further strengthen the importance of parallelism in the real-time area.
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