Discrete Mathematics and Theoretical Computer Scidaabm.), by the authors, 2—rev

On the Relation Between Parallel Real-Time
Computations and Logarithmic Space’

Stefan D. Bruda and Selim G. Akl

Department of Computing and Information Science, Queen’s University, Kingston, Ontario, Canada K7L 3N6;
Email: {bruda,akl} @cs.queensu.ca

We show that all the problems solvable by a nondeterministic machine with logarithmic work space (NLOGSPACE)
can be solved in real time by a parallel machine, no matter how tight the real-time constraints are. We also show that,
once real-time constraints are dropped, several other real-time problems are in effect solvable in nondeterministic
logarithmic space. Therefore, we conjecture that NLOGSPACE contains exactly all the computations that admit
efficient (poly(n) processors) real-time parallel implementations. The issue of real-time optimization problems over
independence systems is also investigated. We identify the class of such problems that are solvable in real time.
Finally, we address the problem of obtaining approximate real-time solutions for problems not solvable in real time.
In the process, we determine the computational power of directed reconfigurable multiple bus machines (DRMBMs)
with polynomially bounded resources (processors and buses) and running in constant time, which is found to be
exactly the same as the power of directed reconfigurable networks of polynomially bounded size and constant running
time. In addition, we show that sophisticated and of questionable feasibility write conflict resolution rules (such as
Priority or even Common) do not add computational power over the Collision rule, and are thus unnecessary, and that
a bus of width 1 (i.e., a wire) suffices for any constant time computation on DRMBM.

Keywords: real-time computation, timea-languages, parallel complexity theory, reconfigurable multiple bus ma-
chines, approximation schemes, independence systems, matroids, bin packing

1 Introduction

The area of real-time computations has a strong practical grounding, in domains like operating systems,
databases, and the control of physical processes. Besides these practical applications, however, research in
this domain is primarily focused on formal methods and on communication issues in distributed real-time
systems. Considerably less work has been done in the direction of algorithms and complexity theory.

One direction within this research area was, however, started by the introductieti-iehaved timed
w-languaged5]. Unlike previous models of real-time computation (such as, for examplegtidime
Turing maching23]), timed languages bridge the long standing gap between the complexity theorists
and the real-time systems community. Indeed, the systems researchers use “real-time” to refer to those
computations in which the notion of correctness is linked to the notion of @%]e ljh theoretical circles,

TThis research was supported by the Natural Sciences and Engineering Research Council of Canada.

subm. to DMTCS®P) by the authors Maison de I'Informatique et des Mattatiques Dis@tes (MIMD), Paris, France



2 Stefan D. Bruda and Selim G. Akl

on the other hand, this term is used as a synonyrofieineor linear time While well-behaved timed»
languages create a formal model, they also capture all the features of real-time computations as understood
by the systems community. Such a claim is supported by the work Bpmhere the formalism is used

in order to model real-time computations encountered in highly practical areas. Real-time complexity
classes, as well as complexity theoretic properties of real-time computations, are studg8]inlh
particular, it is shown that real-time computations form an infinite hierarchy with respect to the number
of processors, and such a hierarchy is independent of the underlying parallel abstract machine.

However, the real-time computations analyze®jrdo not exhibit explicit deadlines. Instead, the real-
time qualifier is given to those computations by the input (and its real-time characteristics). Still, most
practical applications do require that computations are carried output within well-defined deadlines. For
this reason, our main focus in this paper consists in computations with explicit deadlines. Based on the
theory of timedw-languages, we study (classical) languages that can be recognized in nondeterministic
logarithmic space (NLOGSPACE), augmented with real-time constraints (including but not limited to
deadlines). We show that all such computations can be carried out successfully in parallel, no matter
how tight the time constraints are. Conversely, we show that, although hard to recognize in real time, the
languages developed and analyze@®jrchn be accepted in deterministic logarithmic space once the time
constraints are eliminated. Thus, we conjecture that logarithmic space contains in effect exactly all the
computations that admit efficienp@ly(n) processors) real-time parallel implementations.

Supported by such a conjecture, we identify the class of optimization problems over independence
systems that are solvable in real-time, and we are able thus to extend the results obté@heddeéd,
we show that the solution obtained by a parallel algorithm is arbitrarily better than the solution reported
by a sequential one not only for the real-time minimum-weight spanning tree (as sho@i iouft for
any real-time maximization problem over a matroid for which the size of the optimal solution can be
computed in real time. As well, we identify as a promising research direction the process of identifying
those problems that, even if not solvable in the real-time environment imposed by their use, admit good
approximate, real-time computable solutions. In particular, we show thatithgackingproblem does
admit a good approximation parallel real-time algorithm, even if the exact variant is NP-complete.

Besides these main results, we also offer a tight characterization of constant time computations on
reconfigurable multiple bus machinRMBMSs). We show that constant time directed RMBMs have the
same computational power as the directedonfigurable networksand that there is no need for such
powerful write conflict resolution rules as Priority or Common. Indeed, they do not add computational
power over the easily implementable Collision rule. We also find an interesting gap result. Indeed, as far
as constant time computations on RMBMs are concerned, we show that a unitary bus width is enough.
That is, a simple wire as bus will do for all constant time computations on directed RMBM.

The results in this paper are presented as follows: In Se&ion page6 we show that exactly all
nondeterministic logarithmic space languages can be recognized in constant time using a directed fusing
reconfigurable multiple bus machine (F-DRMBM) wifoly(n) processors angoly(n) buses, each of
width 1. Based on this result, we establish the computational power of RMBMs. Our main results on real-
time computations are the subject of Secliban pagell, where we establish that any NLOGSPACE
language is computable in real time on RMBMSs, no matter how tight the real-time restrictions actually
are, and we state the aforementioned conjecture. The issue of optimization problems over independence
systems is considered in SectBon pageld. We sketch a possible future research direction on approxi-
mation real-time algorithms in Secti@on pagel8, and we conclude in Sectighon page21.



On the Relation Between Parallel Real-Time Computations and Logarithmic Space 3

2 Preliminaries

For some sek, P(Z) stands for the power set & that is,?(Z) = 2%. The cardinality ofN, the set of
natural numbers is denoted by poly(n) expresses the upper bound for polynomial functions of one
variablen, that is,poly(n) = n®Y). The empty word is denoted By

Given some total functiori : N — N, we denote bySPACHE f (n)) (NSPACE((f(n)))) the set of lan-
guages that are accepted by a deterministic (nondeterministic) Turing machine which use<4tfrfrogt
space (not counting the input tape) on any input of lemythOGSPACE (NLOGSPACE) is a shorthand
for SPACElogn) (NSPACElogn)). The clas$ (NP) contains exactly all the languages accepted in de-
terministic (nondeterministic) polynomial time. Finally, NC denotes the class of languages accepted in
polylogarithmic time by some parallel machine usipgly(n) processors. Given some cla&8f lan-
guages (that is, boolean functions) and some (non-boolean) furfgtiwa say by abuse of notation that
f € C whenever the extension from language to function does not alter the complexity of computation.

2.1 Timed w-languages

Asequence =T;Tz... € N?is atime sequenciit is an infinite sequence of positive values, anel Tj 1

for all i > 0. Any subsequence of a time sequence is a time sequengelldehavedime sequence is a
time sequence for which, for every N, there exists some finiie> 1 such that; > t. A (well-behaved)
timed w-word over some alphabét is a pair(o,1), wheret € NX is a (well-behaved) time sequence,
ke NU{w}, ando € X, Somert; fromt represents the time at which becomes available as input. For
some timedw-wordw = (0, 1), detimgw) = 0. By abuse of notatiordetimgL) = {detimgw)|w e L}.

The concatenation of two timed words is defined as the union of their sequences of symbols, ordered in
nondecreasing order of their arrival time. Given two timethnguages ; andLy, the concatenation &f;
andL; is L1Lo = {wiwy|w; € L1, W € Lp}. The notation]iL, wi ([, Li) is a shorthand fowws - - - Wy
(LiLz...Lp).

A real-time algorithmA consists in dinite contro| aninput tapethat always contains a (not necessarily
well-formed) timedw-word, and aroutput tapecontaining symbols from some alphalfet The input
tape has the same semantics as a timedbord. During any time unitA may add at most one symbol to
the output tape. The content of the output tapéeforking onw is denoted byO(A,w). There exists
a designated symbdl € A. A real-time algorithmA acceptgsthe timedw-languaged. if, on any inputw,
|O(AW)|f = wiff we L.

Letw = (0,T) be some timedy»-word. Forig = 0and anyj > 0, lets; = Oi;_1+10ij_y+2...0ij, such that
@ T +1="Ti_y42 =" =Ti}, and ) Tij+1 =+ Tij. Then, the sizéw| of wis |w| = max;>o|sj|. Given
a total functionf : N — N, and some model of parallel computatibh the class rPROCY () includes
exactly all the well-behaved timad-language4. for which there exists a real-time algorithm running on
M that accepts and uses no more thdr{n) processors on any input of sine By convention, the class
rt-PROC" (1) of sequential real-time algorithms is invariant with

Pursuit and evasion on aring Fork > 0, the languagek¥, modeling thek-dimensional version of the
pursuit and evasion on a ring probles] pre developed ing]. We shall give here a very brief overview
of these languages, directing the interested readd]td-pr a givenk, and for given positive constants
r, p, andc, L¥ is a well-behaved subset of the langudgé;-oLqi, wheredetimelLo) € {a,b}". Each
W € L denotes the move made by the pursuee at timei, under the form of anodulok directionand

a sequencef at mostp as and/orb's. The sequence is to be inserted into fhih segment (of length



4 Stefan D. Bruda and Selim G. Akl

r/k and viewed as a conceptual circle) of the initial word expresseay Lo, according to the given
direction (bothj and the direction being given by what we called above “the mokidioection.”

A word w € LK is accepted iff it can be decided at some finite timéhat the word available at that
moment in time has an equal numbea&fandb’s (intuitively speaking, the accepting real-time algorithm
catches the pursuee—or the input—at tife In order to eliminate the ambiguity generated by the
somehow generic notations used@j, we shall denote henceforttf by PURSUIT, for anyk > 0.

2.2 Models with reconfigurable buses

Two main models with reconfigurable buses have been developed in the literatumecahégurable
network(or RN for short) #] and thereconfigurable multiple bus machifer RMBM) [21]. While both

models have similar characteristics, RMBM features a clear separation between buses and processors.
Throughout this paper, RMBM is thus our model of choice. We shall, however, briefly define RN, since
we also refer to this model.

The reconfigurable multiple bus machine An RMBM [20, 21] consists a set op processorsandb
(electronic, nondirectionalpuses For each processarand busb there exists awitch controlled by
processor. By these switches, a processor have access to the buses by being able to read or write from/to
any bus. As well, a processor may be ablsggmena bus, obtaining thus two independent, shorter buses.
Any processor is allowed tiuseany number of buses together by usinfyise lineperpendicular to and
intersecting all the buses. A fuse line can be electrically connected to any number of buses, simultaneously.
Two buses that are connected to the same fuse line are said to be fused, and act as a unique, longer bus.

DRMBM, the directedvariant of RMBM [21], is identical to the undirected model (in particular, the
buses continue to be nondirectional), except for the definition of fuse lines. In a DRMBM, each processor
features two fuse linesddéwn and up) perpendicular to and intersecting all buses. At the processor’s
control, each of these fuse lines can be electrically connected to any bus. Assume that, at some given
moment, buses, iy, ..., ik are all connected to the down (up) fuse line of some processor. Then, a signal
placed on bus; is transmitted in one time unit to all the busesuch that > j (I < j). Itis argued in20]
that the fuse lines must use active components anyway, such that a directional connection is as practically
realizable as a nondirectional one.

For ease of presentation, one can consider RMBM as a special case of DRMBM, in which the up and
down fuse lines are “synchronized,” in the sense that the down fuse line of some prqgéssonnected
to some bug iff the up fuse line ofp; is connected to bug We shall adopt in the following this uniform
characterization, and thus we assume that each processor in any RMBM variant has two (up and down)
fuse lines, even if these fuse lines may in fact act as one bidirectional line. Furthermore, as we shall
emphasize below, it is clear from this construction that, for any nondirectional RMBM there exists a
DRMBM simulating it, that uses the same amount of resources (time, processors, buses, bus width).

If some RMBM (DRMBM) is not allowed to segment buses, then this restricted variant is denoted by
F-RMBM (F-DRMBM).

As far as the process of reading and writing on the buses is concerned, one can distinguish between
CREW (concurrent read, exclusive write) and CRCW (concurrent read, concurrent write) RMBMSs. The-
oretically, exclusive read, exclusive write (EREW) RMBMs are possible as well, but we shall not consider
such, since we believe that the ability of all the processors to listen to a common bus is a trivial feature
(that is, some extra effort in order to insure exclusive read appears to be necessary).

For CRCW (concurrent read, concurrent write) RMBMSs, one should establish a conflict resolution rule



On the Relation Between Parallel Real-Time Computations and Logarithmic Space 5

for the process of writing a value to some bus. The most realistic such a rule is Collision (indeed, such
a technique is widely used nowadays in the MAC network layer protocols, like CSMA-CS from which
the Ethernet protocol is derived9]), where two values simultaneously written on a bus result in the
placement of a special collision value on that bus. Other conflict resolution rules (used for either RMBM
or other models of parallel computation) are Common (two processors are allowed to simultaneously
write on the bus only if the values written by them are identical), Arbitrary (some arbitrary processor
succeeds in writing on the bus and the write request of all the others are discarded), Priority (the write
request of the highest priority processor is the only one to succeed), and Combining (a combination of the
values written by all the processors is placed on the bus). The use of the latter three rules for a bus (i.e., a
spatially distributed resource) is indeed questionable. We will, however, consider all these possible rules.
On one hand, this is done for completeness reasons. On the other hand, these rules are in fact equivalent,
at least for the computational settings we are interested in (directed RMBMs with constant running time),
as we shall show in Corollai8.8 on pagelQ. We restrict only the Combining mode, requiring that the
combining operation be associative and computable in nondeterministic linear space. We believe that
these are reasonable restrictions, as they clearly hold for any reasonable combining operation.

As for most models of computation, the word size of each processor in an (D)RMBM is limited to
O(logn) [21]. Furthermore, we are interested in constant time computations. Thus, we can assume
without loss of generality that a processor has only a constant number of internal registers (indeed, even if
there are an infinite number of registers, a processor can access only a constant number of them given the
time restrictions). It follows that thiaternal configuratioror internal statec; of some processqy; (which
contains the content gf;’s registers and the state pf's finite control) in an RMBM can be expressed
by a word of sizeO(logn). For similar reasonsq(logn) word size and constant running time) and by
information theoretic arguments, it follows that, at any given time, one can fully describe which buses are
fused together or segmented by a given processor, using a word @($imm). These limitations can be
formally captured by introducing the conceptusfiform familyof RMBMs, similar to the concept of RN
family [4].

An RMBM (DRMBM, F-DRMBM, etc.) family X = (Ri)n>1 iS a set containing one RMBM
(DRMBM, F-DRMBM, etc.) construction for each > 0. A family ® solves a problen® if, for any
n, R, solves all inputs foP of sizen.

A description of some (D)RMBM family using(n) processors and(n) buses is a list op(n) tuples
(i,ci,up,down,segmeny, 1 <i < p(n). Such atuple describes the configuration of procegs@pecif-
ically, ¢; denotes the internal configuration gf andup (down, segmenj represents a set of rules that
determine which buses are fused by the up fuse line (fused by the down fuse line, segmented), depend-
ing ong¢;. In the case of F-RMBM or F-DRMBM, the seegmentis always empty (no buses are ever
segmented).

We say that some RMBM familg_ is auniform RMBM family(or that®_is uniformly generatedn
SPACHIlog(p(n) x b(n)))) if there exists a Turing machind that, givenn, produces the description of
Ry usingO(log(p(n) x b(n))) cells on its working tape. Since we deal only with uniform families here,
we henceforth drop the “uniform” qualifier, with the understanding that any RMBM family described in
this paper is uniform.

Assume that some famil® = (R,) solves a problenP, and that eactR,, n > 0, usesp(n) pro-
cessorsp(n) buses, and has a running tih@). We say then thaP € RMBM/(p(n),b(n),t(n)) (or
P € F-DRMBM(p(n),b(n),t(n)), etc.), and thatk hassize complexityp(n) x b(n) (it is customary
[14, 21] to consider the size of a network as being the product between the number of processors and



6 Stefan D. Bruda and Selim G. Akl

the number of buses) arigthe complexity(n).
It should be noted that, as shown above, a directed RMBM can simulate a nondirected RMBM by
simply keeping all the up and down fuse lines synchronized with each other:

Observation 1 X YRMBM (x(n),y(n),z(n)) € XYDRMBM (x(n),y(n),z(n)) for anyx,y,z: N — N, X €
{CRCW,CREW}, andY € {F-,A}.

The bus widthof some RMBM (DRMBM, etc.) denotes the maximum size of a word that may be
placed (and read) on (from) any bus in one computational step. It is immediate that the bus width of any
RMBM from an RMBM family is upper bounded b®(logn).

The reconfigurable network An RN [4] is a network of processors that can be represented as a con-
nected graph whose vertices are the processors and whose edges represent fixed connections between
processors. Each edge incident to a processor corresponds to a (bidirectional) port of the processor. A
processor can internally partition its ports such that all the ports in the same block of that partition are
electrically connected (or fused) together. Two or more edges that are connected together by a proces-
sor that fuses some of its ports form a bus which connects ports of various processors together. CREW,
Common CRCW, Collision CRCW, etc. are defined as for the the RMBM model.

ThedirectedRN (DRN for short) is similar to the general RN, except that the edges are directed. The
concept of (uniform) RN family is identical to the concept of RMBM family. The clB&s(n),t(n))
(DRN(s(n),t(n))) is the set of problems solvable by RN (DRN) uniform families wsth) processors
(s(n) is also called theize complexifyandt(n) running time.

3 RMBM and NLOGSPACE computations

In this section, we first show that tlggaph accessibility problerfGAP) can be solved by a DRMBM in
constant time. Then, we investigate the relation between RMBM and NLOGSPACE computations. We
show that RMBMs with polynomially bounded resources and constant running time recognize exactly all
the languages in NLOGSPACE.

Definition 3.1 (Graph accessibility problem) GAR, , denotes be the following problem: Given a di-
rected graplc = (V,E), V = {1,2,...,n} (expressed, for example, by the (boolean) incidence mBgtrix
determine whether vertaxis accessible from vertek In general, the problem of determining whether
vertex | is accessible from vertexs denoted bYGAR ;.

Lemma 3.1 GAR , € CRCWF-DRMBM((n? —n)/2,n,2). Furthermore, the F-DRMBM family solving
GAR, j, uses the Collision resolution rule and has bus witlth

Proof. The following RMBM algorithm is a variant of the algorithm that computes the shortest path
in a directed graph1d] (which is itself an adaptation of the algorithm for the minimum spanning tree
[2Q)). However, we are not interested in the length of an eventual path, so that our construction requires
considerably less resources.

For convenience, each processor is denote@ipyl <i < j <n. When we say that some processor
fuses busek andl, we imply that this fusion is directional, such that a signal placed orklisiseen on
busl, but not vice versa. We assume that each procggs&nows the value of both; andlj;, wherel is
the incidence matrix. Then, the algorithm performs the following steps:



On the Relation Between Parallel Real-Time Computations and Logarithmic Space 7

1. Each processqgj, 1 <i < j < nfuses busesandj iff ljj = True. Simultaneouslyp;; fuses buses
j andiiff Ij; = True,

2. p13 places a signal on bus and pi listens to bus1. pi» reportd Trueif it receives some sig-
nal (either the original one emitted kpi3 or the signal corresponding to a collision), aralse
otherwise.

Note that, even if only one processor writes on the busses, the algorithm cannot be implemented on
an exclusive-write RMBM, as the signal emitted pys may reach some bus on more than one path. We
must show thapi reports true iff vertexn is accessible from vertek In fact, it can be easily proved
by induction on the length of the path frosto t that, for anys, t, 1 <s;t < n, a signal placed on bus
sreaches busiiff vertex t is accessible from vertex and this completes the proof (just ps= 1 and
t =n). Indeed, both steps of the algorithm can be clearly performed in one machine cycle each. As well,
note that the content of the signal emittedy is immaterial, so that a bus widthsuffices. O

Corollary 3.2 If the input graphG = (V,E) of GAR,; is given by a list of verticek instead of an inci-
dence matrix, the@®@AR , € CRCWF-DRMBM(m,n,O(1)), wheren= |E| andn = |V|.

Proof. Identical to the algorithm in the proof of Lemn3al on pageb, except that, at step 1 of the above
algorithm, processaop;; fuses busesandj iff (i, j) € L. a

It is worth mentioning that the algorithm presented 2@][uses a CREW DRMBM (as opposed to
the CRCW F-DRMBM used in Lemma.1 on page6 and Corollary3.2). Furthermore, this algorithm
computes the shortest path between two vertices. Therefore, it implicitly compafg,. This lets us
conclude thaGAR , € CREWDRMBM (2mn, n270(1)). However, in what follows, we will use the result
based on the CRCW F-DRMBM since, on one hand, it uses resources more efficiently, and, on the other
hand, we believe that a Collision conflict resolution rule is just as realistic as exclusive write.

Consider now some languagén NSPACElogn). It follows that there exists a nondeterministic Turing
machineM = (K, %, 8,5) that accepts and use©(logn) working space (by abuse of notation, we call
M an NSPACE]logn), or NLOGSPACE, Turing machine). Without loss of generality, consider that the
working (and input) alphabet &l is~ = {0,1}. Letk be the number of states M, that is,k = |K|. The
transition function is denoted By 6: (K x £ x X) — P((Ku{h}) x (ZU{L,R}) x {L,R}), and the initial
state bysy. For the sake of simplicity, we consider thdthas one working tape only (the extension for
multiple working tapes is immediaté2,(18]). It should be noted tha#l also has a (read-only) input tape.

A configurationof M working on inputx is defined as containing the current state, the content of its
tapes, and the head position on each tape. Denote such a configurat®nyj), wheresis the state,
i and|j are the positions of the heads on input and working tape, respectively @nthe content of the
working tape. Note that the content of the input tape is established at the beginning of the computation
(indeed, the input tape contains the inpyitand does not change. Therefore, the input tape does not
change the configuration, except for its head position. For two configuraticaredv,, we writevs - v,
iff vo can be obtained by applyirigexactly once ow;.

SinceM is nondeterministic, the set of possible configurationdlofvorking onx forms a directed
graph (denote it byG(M,x) = (V,E)) as follows: V contains one vertex for each and every possible
configuration oM working onx, and(v1,v») € E iff the configuration corresponding te can be reached

* In fact, neithem;z nor p12 have any special characteristics, and any pair of distinct processors will do.



8 Stefan D. Bruda and Selim G. Akl

from the configuration corresponding ¥ in one step oM (that is, iff vi - v»). In the following, we
refer to both a configuration and the vertex denoting that configuration in the associated graph simply as
“configuration,” as long as the exact meaning is understood from the context.

Itis clear that € L iff some configuratior{h, in, Wh, jn) is accessible (M, x) from the initial config-
uration(sp,ip, Wo, jo). One should also note that there @@y(n) possible configurations dfl. Indeed,
for any configuratior(s,i,w, j), i can taken = |x| values. Furthermore, sin¢®| = O(logn), there are at
mostpoly(n) possible contents of the working tape, aindan takeO(logn) values.Given that the set of
stateX is fixed, the number of possible configurationpay(n).

Therefore, for any languade € NSPACElogn) and for anyx, determining whethex € L can be
reduced to the problem of computing the graph accessibility problem (GAP) for the Gi@phx) =
(V,E), whereM is some Turing machine deciding M € NSPACElogn). In fact, a stronger result is
immediate: Giverx, L, M, andG(M, x) as above, we consider without loss of generality that the initial
state is represented by vertexand the (unique) final state by vertaxn G(M, x). Then, any problem in
NSPACElogn) can be reduced t6AR .. Indeed, we are interested only in the reachability of ventex
(final state) from vertex (initial state).

Lemma 3.3 Fix a languageL € NSPACElogn). LetM = (K,Z,d,5) be anNSPACKElogn) Turing
machine that accepts. Then, given some word |x| = n, there exists a CREW F-DRMBM algorithm that
computess(M, x) (as an incidence matrix) i®(1) time, and usepoly(n) processors angholy(n) buses
of width 1.

Proof. The configurations o6(M,x) do not depend o, but only onM. Therefore, we consider that
these configurations are known in advance. That is, the séwertices ofG(M, x) is known beforehand,
even if the seE of edges changes with In addition, the transition functiod is known to all the
processors.

Putr’ = |V| (' = poly(n)). Then, the RMBM algorithm use®+ (W% —n')/2) processors, as follows:
The firstn processors, denoted hyy, 1 <i < n, contain the current inpwt (in the sense that eagh
containsx;, thei-th symbol ofx). At the beginning of each computational stppwritesx; to busi. Since
x; € {0,1}, a bus widthl is enough.

We shall refer to the remainin(gn’2 —n')/2 processors apij, 1 <i < j <n'. Initially, a processop;
holds a false initial value for the elemerisandl;; of the incidence matrix. Then, eachp;; considers
the (potential) edgeév;,vj) and (vj,v;) corresponding tdj; andl;;, respectively. If such edge(s) exist,
pij writes Trueto l;; and/orl; as appropriate. Otherwise, it does nothing. There is no interprocessor
communication between process@s 1 <i < j <n', thus any RMBM model is able to carry on this
computation.

It remains to show that determining whether there exists an @glgg) is computable in constant time
by one processory; or p;ji). Clearly, given a configuratios, pjj can compute in constant time any
configurationv| accessible in one step from(if vi = (s,z,w,y), theny, is obtained by possibly changing
the states, incrementing, decrementing or keepirand/ory unchanged, and changing at most one symbol
from w, everything according t8). Recall now thad: (K x ) — P((Ku{h}) x (ZU{L,R}) x {L,R}),
and note that?((K U {h}) x (ZU{L,R}) x {L,R})| = O(2") (since|Z| = 2, and|K| = k). That is, the
number of configurations that are accessible from some given configuration is coas@ny.(In other
words, pij computes (in constant time) a constant number (at 992f)) of possible configurations.
Note that, in additionp;; can holds andw in two of its registers, and it has access to any sympot the
input by simply reading bus After this, pjj can decide whether; is accessible fromy; in constant time



On the Relation Between Parallel Real-Time Computations and Logarithmic Space 9

by simply checking the membershipwfin the set of the newly computed configurations. It follows that
pij computed;j andl;; in constant time, and this completes the proof. |
Some comments on the RMBM algorithm developed in the proof of Le@u&ian page8 are in order.
One can note that the constant running time of this algorithm may be quite @(8®) { furthermore it
depends on the number of states in the initial Turing machine). On the other hand, the subsequent use
of Lemma3.3 will emphasize the need for the RMBM algorithm to be as fast as possible. Thus, even if
theoretically sound, the dependency of the running time to the number of states is not a desirable feature.
However, given some nondeterministic Turing machihe- (K,%, 9, ), one can build an equivalent
Turing machineV’ = (K’, %', &, 5) such that, for ang2 = &(s1), |s2| < 2. Indeed, take some state K
such thatS = &(s,a,B) for somea,B € %, and|S| > 2. Then, introduce a sé¢; of new, distinct states
(which do not change the tapes’ content or head positions}),tsuch that the graph correspondingdto
restricted tdKsU {s} is a binary tree rooted at with exactly all the terminal nodes 8, and with all the
nonterminals (except the root) froky. Clearly,M’ is equivalent tdM, in the sense that they accept the
same language and use the same amount of space.
One can now build the algorithtfrom Lemma3.3based oM’ instead oM. Then, althougIG(M, x)
may grow (still,|V | remainsO(n)), the running time of\ is now upper bounded by a very small constant,
and this constant no longer depends on the number of staiMgafM’ for that matter).
From Lemma3.1 on pages and Lemmé3.3 on pageB, it follows that

Lemma 3.4 NLOGSPACEC CRCWF-DRMBM (poly(n), poly(n),O(1)), with Collision resolution rule
and bus widtHL.

Proof. Given some languagk in NSPACElogn), let M be the NSPACElogn)) Turing machine

acceptind.. For any inpuk, the F-DRMBM algorithm that acceptsworks as follows: Using Lemnia.3

on pages, it obtains the graple(M, x) of the configurations dfl working onx (by computing in effect the

incidence matriX{ corresponding t@&(M, x)). Then, it applies the algorithm from Lemri8al on page6

in order to determine whether vertexhalting/accepting state) is accessible from veftdinitial state)

in G(M, x), and accepts or rejecks accordingly. In addition, note that the valugsandl; computed by

(and stored atjj; in the algorithm from Lemma@.3 are in the right place as input fqx; in the algorithm

from Lemme3.1 It is immediate given the aforementioned lemmas that the resulting algorithm atcepts

and uses no more thgroly(n) processors angoly(n) buses of constant width. |
Conforming to Lemma.4, any NLOGSPACE language can be accepted in constant time by a directed

RMBM. In fact, the relation between directed RMBMs and NLOGSPACE languages is even stronger:

Lemma 3.5 CRCWDRMBM (poly(n), poly(n),0(1)) € NLOGSPACE for any write conflict resolution
rule and any bus width.

Proof. Let R be some RMBM inCRCWDRMBM poly(n), poly(n),O(1)) performing stepd of its
computation(d < O(1)). Suppose that there exists a Turing machihethat generates the description of
Rafter steql usingO(logn) space. Then, by standard techniqued,jone can modifyMy (obtainingM},)
such thatM/, receivesn and soma, 1 <i < n, and outputs theQ(logn) long) description for processor
instead of the whole description. We establish the existenbygand thusM)) by induction oved, and
thus we complete the proof.

Clearly, Mg exists by the definition of a (uniform) RMBM family. We now assume the existence of
Mg-1 (M}_;) and show howMyq is constructed. For each procesgprand for busk read byp; during



10 Stefan D. Bruda and Selim G. Akl

stepd, Mq performs (sequentially) the following computatidviy maintains two word® andp, initially
empty. For evenpj, 1 < j < poly(n), My determines whethgy; writes on busk. This implies the com-
putation of GAR ;. GAR; is clearly computable in nondeterminis@logn) space (it is a simplification
of the Graph Accessibility Problem, which is NLOGSPACE-compldig];[the local configurations of
fused and segmented busses at each processor are obtained byMglig)tdf p; writes on bus, then
Mg usesM,_, to determine the valuewritten by p;, and updateb andp as follows: Ifbis empty, then it
is set tov (p; is currently the only processor that writes something tokjuandp is set toj. Otherwise,

1. If Ruses the Collision resolution rule, the collision signal is immediately placbdTime value of
p is immaterial.

2. When the Common rule is usddy compares andv. If they are different, the input is rejected
immediately. The value gf is again immaterial.

3. If the conflict resolution rule is Priorityp and j are compared; if the latter denotes a processor
with a larger priority, therb is set tov andp is set toj. Otherwise, neitheb nor p are modified.
The Arbitrary rule is handled similarly, except that the decision whether to mbdifydp is made
arbitrarily instead of being based on the valueg ahdp.

4. If Ruses the Common resolution rule wittas combining operatiory is set to the result dbov.
The operation can be performed@tlogn) space, since the length of bditandv is O(logn), and
o is computable in linear space. As well, the operatids associative. It follows that, once all the
processorg; have been considered, the contenba$ the correct combination of all the values
written on busk.

Once the content of bushas been determined, the configuratiorpois updated accordinglya andp
are reset to the empty word, and the same computation is performed for the next bus pgadfoy the
next processor.

The space required by is the space for the configuration pf itself, plus the space for the config-
uration of one other processor, plus the space reqliyedandp. The latter three values cannot be of
size larger tha®©(logn) (since the word size of any processodogn) and the number of processors
is poly(n)), and the configurations clearly tak¥logn) space. Thus, the whole computation\f takes
O(logn) space, and the induction is complete. O

Lemma3.4 on paged and LemméB.5 on paged imply the following results:

Theorem 3.6 CRCWDRMBM (poly(n), poly(n),0(1)) = NLOGSPACE for any write conflict resolu-
tion rule and any bus width.

For any write conflict resolution rule and any bus wid@RCWDRMBM (poly(n), poly(n),0(1)) =
CRCWF-DRMBM (poly(n), poly(n),O(1)) with Collision resolution rule and bus width

Corollary 3.7 DRMBM | poly(n), poly(n),0(1)) = DRN(poly(n),O(1)).
Proof. Immediate from TheoreiB.€ on pagéll, sinceNLOGSPACE= DRN(poly(n),O(1)) [4]. O
The following is a generalization of Theore3tt on pagelC:

Corollary 3.8 For any problem P solvable in constant time by some (directed or nondi-
rected) RMBM family using poly(n) processors and poly(n) buses, it holds thatP €
CRCWEF-DRMBM (poly(n), poly(n),O(1)) with Collision resolution rule and bus width



On the Relation Between Parallel Real-Time Computations and Logarithmic Space 11

Proof. From Theoren8.6 on pagelC and Observatiod on pageb. O

We note that the power of (nondirected) RMBMs has been investigate2lljnWwhere it is shown
that nondirected RMBMSs are exactly as powerful as nondirected RNs, and that the Collision, Common,
Arbitrary, and Priority rules are equivalent in power. In addition, RNs (and thus RMBMS) solve in constant
time exactly all the problems in LOGSPACE] [ By Theoren3.€ on pagel0and CorollanB.7on pagélQ
we extend these results to the directed variants of RMBMs and RNs running in constant time. As expected,
DRMBMs, DRNs, and logarithmic space bounded nondeterministic Turing machines are found to have
the same computational power. Coroll@)¢ on pagel0 shows that, again, the Collision, Common,
Arbitrary, and Priority rules are equivalent to each other. In addition though we show that a resolution
rule apparently much more powerful than the others, namely Combining, adds no computational power
either. Then, for constant time computations on DRMBM, bus width does not matter; any problem can
be solved using buses of unitary width. Finally, as is the case of (undirected) RMBMs, it follows from
Corollary 3.8 on pagelQthat segmenting buses does not add computational power over fusing buses.

4 Small space computations are real-time

We have now all the necessary ingredients to state the first result linking real time with logarithmic space
computations. First though, we have to make an additional assumption: We henceforth consider that
the deadlines imposed on real-time computations are reasonably large compared to the processor clock
frequency. We believe that this is a reasonable assumption. Indeed, nowadays processors operate at
frequencies around (and sometimes exceeding) 1GHz; still, we are not aware of any real-time application
that requires deadlines measured in nanoseconds.

Note now that the potential existence ofl@adlinecan be modeled as a well-behaved timesvord
[5] by Wy = (o, 1), where, for some special, designated symhbotsndd,

(i) o =wandt;=ifori>0;or

(i) o1 € NNn[max0), 11 =0; fori > 0, if Tj <tg, thent; =i andg; = w. Letig be the index such that
Ti =tq. Then, for alli > ig, Ty =io+ | (i —i0)/2], and

[ d ifi—igiseven
i = { 0 otherwise; or @
(i) Same as case (ii), except that equatit)jbecomes
N if i —ip is even
i = { u(ty) otherwise. (2)

The above description &fy has the following semantics: The special symisas present whenever
the current time does not exceed the deadline; if the deadline passed, then the symbols that arrive as input
are alld. If the computation is completed at a moment in which the input symhw| iken it has met the
associated deadline; otherwise, the deadline has passed.



12 Stefan D. Bruda and Selim G. Akl

Case (i) models a computation without deadlines. Such a case is provided for completeness, since,
even in a real-time environment, it is possible that some tasks have no associated deadline. Provided that
it terminates at all, any such a computation meets its deadline (that is, terminates at some time when the
arriving input isw). Case (ii) represents a computation with a firm deadline at timé computation
completing after the deadline is useless, and this is expressed by the presence of the zeroes (meaning zero
utility) arriving together with the symbold that signal the fact that the deadline has passed. Finally, case
(iii) models a computation featuring a soft deadline at tijeith the utility functionu : NN [tyg, w) —

NN [0,maX. At any moment > tq, the signald comes together with the usefulness of the associated
computation (between 0, meaning useless, and some maximunmvalugrovided that the computation
completes at timé.

With this definition oMy, and for any problen® € NSPACElogn), letP; = {(00g,T)| 0 is some input
for P, o4 = detimgW) for some timed word\g modeling a deadline, andis some well-behaved time
sequenck In other wordsP; represents the probleRin the (potential) presence of deadlines. Then, the
relation between NLOGSPACE and real-time computations can be informally stated as follows: Suppose
one has a (possibly infinite) set of inputs for a bunch of problems in NLOGSPACE. We impose some
(any) deadline for each of these inputs, and we feed them at various time moments to some machine. If
that machine happens to be a CRCW F-RMBM, then it is able to handle the input successfully. Formally,
given Theoren8.€ on pagelQ (and noting that the size complexity of an RMBM wigloly(n) proces-
sors andpoly(n) buses ispoly(n)), we have the following relation linking NLOGSPACE with real-time
computations.

Theorem 4.1 U ([penspacgiogn) Pr) € t-PROCREWFDRMBM (holy(n)), wheren is the maximum input
size for problem#.

Proof. All the processing implied by Theore®6 on pagéeld (namely, the algorithms from Lemm@&sl
on pageband3.2 on pageB) takes very little (and constant) time, and thus accommodates any reasonable
(in the sense of the above assumption) time sequeassociated with the computation. O

In some sense, one may argue that the inclusion relation from Theéitis in fact an equality,
conforming to Theorer8.6 on pagell. Indeed, NLOGSPACE computations dhe onlycomputations
in the classical sense that can be performed in constant time by DRMBMSs, no matter how many processors
and buses are used; thus, given any deadline (in effect imposing a constant upper bound on the running
time), it follows that no computation outside NLOGSPACE can be successfully carried out. However,
this inclusion cannot be improved upon, since there might exist real-time computations (for example, not
exhibiting explicit deadlines and thus not necessarily having constant time constraints) that are not in
NLOGSPACE but can still be performed within the given resource bounds (that is, a polynomial number
of processors and buses).

Indeed, one candidate for such computations can be the family of tidadguage®URSUITK, k > 1,
presented ing] and summarized in Sectighl on page3. Those languages, modeling tkelimensional
version of thepursuit and evasion on a ringroblem, do not feature explicit deadlines. The real-time
qualifier is instead given by the “movements of the pursuee,” that is, by the real-time input arrival. We
shall try to see what is the classical computation corresponding to this problem.

In Theorem4.1, we addeddeadlines (that is, real-time constraints) to problems. We face now the
reversed problem, namely how can alaminatethe real-time qualifier from the specification of some
problem. Analyzing the form of the woMly modeling deadlines offers the clue. Indeed, one can notice
that, from some time on, the symbols fraiy no longer represent the input. Instead, they consists of



On the Relation Between Parallel Real-Time Computations and Logarithmic Space 13

symbolsw andd that model the timing constraints imposed on the computation. Similarly, in a real-time
problem for which the input is virtually endless, a prefix of that input represents the same problem, except
that in the case of such a prefix, the input “stops coming” at some time. This is the most general restriction
to a classical environment one can model, since the input is finite in such an environment:

Definition 4.1 Consider some well-behaved timed omega-languag€or some(o,1) €L, i > 0is a
progression pointffs 1 # Tj1.

Let Ls = {d’|there exists some finite progression paisuch thaio,t) € L ando’ =01} (each
word in Ls is constructed by taking a word frolm restricting its length to some finite and discarding
the time sequence). If, for some complexity cl@4s € C, then we say thdt € C/rt (L is thereal-time
counterpartof Lg; alternatively,Ls solves the same problem hsbut without real-time constraints, and
thusLs is thestatic versiorof L).

Note in passing that Definitiod.1 on pagel3 not only allows us to study the pursuit problem in the
context of Theorerd.1 on pagel?2, but it offers a more concise formulation of Theordu itself:

Theorem 4.2 NSPACE/rt (logn) C rt-PROCREWF-DRMBM (h51y(n)).

It is immediate that the two formulations are equivalent, while the one expressed by Th&@rism
easier to understand.

We now show that pursuing something is easy outside the real-time paradigm: Recall from[34Cction
on page3 that PURSUITk denotes the K-dimensional version” of the pursuit and evasion probl@&p [
Then,

Theorem 4.3 For anyk > 0, PURSUIT, € SPACE/rt (logn).

Proof. LetC be a class such thRURSUIT, € C/rt. We shall show tha® = LOGSPACEand we are done.
According to Definitiond.1 on pagel3, a wordws in the static version oPURSUIT, has the following
structure: Denotéws| by n; then,ws contains

e An initial word w® € {a,b}" for somer < n; this is the initial configuration, which the pursuee
modifies as time passes.

e Some numbem of moves by the pursuee (denoted by some wavds L, 1 <i < m); such a
move in effect changes a maximummpsymbols fromw®, p < r.

It is clear thatr, p,m < n, sincen is the length of the whole input. Consider now a deterministic Turing
machineM accepting the static version BURSUITk. In order to determine the number & andb’s in
wP, M simply keeps two countef®; andCy, one fora’s and the other fob’s, respectively. As the input is
scanned, the two counters are incremented accordingly.

Once the end ofi® is reachedM performs the following step for eaati, 1 < i < m: M identifies that
portion ofw® which is changed by'. Then,M scans this portion, decrementifig or Cy, for eacha or b
it encounters during this procedure. Final,identifies that portion o' that change® and scans it,
incrementingC, and/orCy, accordingly. It is clear that, at the end of stapf such a computatiorG, and
C, contain precisely the number ak andb’s, respectively, that are presentifl as it is changed by all

§ One does not want to split a bunch of symbols arriving at the same time, since such a bunch often represents a nondivisible piece
of the input...



14 Stefan D. Bruda and Selim G. Akl

W, 1<i<m. Therefore, when the end of the input is reachddiimply compare€, andC, and accepts
the input iff they are identical.

Clearly, C; andCy, takelogr space each (since there are at ntoa®s and at most b’s in wp). The
identification procedure mentioned above uses two pairs of counters, each pair delimiting the portions of
interest ofn® and the curreni/, respectively. Each of these four counters holds an index in the current
input, hence it can be stored iagn space. Finally, setting these counters involves simple arithmetic
operations on indices (that is, numbers bounded abovg,lhence they are computable in LOGSPACE.
Therefore, the space required by the whole computati@{lsgn), as desired. O

Theorend.2on pagel3is an interesting result. Indeed, everPifRSUIT is a problem that requires a
lot of computational effort (in particular, it cannot be solved at all if less @laprocessors are available
[8]), it becomes a very simple problem (not only in NLOGSPACE, but even in LOGSPACE) once the
real-time constraints are eliminated. Thus, Thecde&qjustifies the following conjecture:

Claim 1 NSPACE/rt (logn) = rt-PROCRCWF-DRMBM (hq1y()),

5 Independence systems and real-time computation

We focus our attention now to optimization problems. In this context, we identify the class of such
problems that can be computed in real time if a parallel machine is used. Based on this identification, we
also extend previous resul2]|

5.1 Independence systems and matroids

If Sis a set referred to as tlset of feasible solutionsver which a mapping is defined ¢ : S— R), then
a problem of the form

{maxc(s)|se S} or 3)
{minc(s)|s€ S} 4)

is anoptimization problenover S. Form3) defines anaximization problemwhile form (4) is aminimiza-
tion problem c is referred to as thebjective function In the following, we shall refer to maximization
problems whose set of feasible solutions contains only elemer{8, d}". In this caseS can be con-
sidered a subset df(E), with E = {1,2,...,n}. Therefore, problems of the forr8)(can be restated
as

RCEandRe S}. (5)

max{ i;Ci

Notice that in this case(s) is implicitly defined asy i for any ses C E. We consider without loss of
generality that; > 0, 1 <i < n. The set of optimal solutions to the maximization probl&hig thus not
changed if one replac&by itshereditaryclosureS* defined ass* = SU{s|sC 5,5 € Sfor somes C E}.
(E,S") is anindependence systeams per Definitiorb.1 on pagels.



On the Relation Between Parallel Real-Time Computations and Logarithmic Space 15

Definition 5.1 [13] Let E be a finite set an& C P(E), such thatS has themonotonicity propertys; C
S € S= 51 €S Then,(E,S) is anindependence systeand members ddare said to béendependent
Let (E,S) be an independence system. For each E, thelower rankir (F) (upper rankur(F)) of F
(with respect tdS) is defined as the cardinality of the smallest (largest) maximal independent subsets of
F:lIr(F)=min{|s||se SsCF andsu{e} € Sforallec F\ {s}}; ur(F) =max{|s||s€ SsCF}.

A greedy algorithrfor problem 6) on general independence systems is gived 8 [

algorithm GREEDYMAX (E, S s;)

1. let(e1,e,...,en) be an ordering oE with c(g) > c(e+1)
2. g0

3. fori<—1...ndo

3.1. if yU{a} e Sthensyg —syU{a}

Proposition 5.1 [13] Let (E,S) be an arbitrary independence systesy the solution returned by algo-
rithm GREEDYMAX, ands* the optimal solution of). Then, for any weight function: E — R,

IrF c(sg)
Mo GE S oy =1

It should be noted that the algorithBREEDYM AX contains one statement which depends on the actual
independence system being considered, namely the boolean expression on line 3.1. Indeed, for a general
independence system one does not know how the ctsgek{e } € S’is done. Thus, in order to analyze
the complexity of such an algorithm, one can assume the existenceotéerthat can answer whether
some sesis in Sor not.

Definition 5.2 [13] An independence systelik,S) is called amatroid if, for any F C E, it holds that
Ir(F) =ur(F).

From Propositiorb.1on pagels and Definitiors.2 it follows that:

Corollary 5.2 Algorithm GREEDYMAX on a matroid(E,S) yields the optimal solution foi5j for all
objective functions: E — R™.

5.2 A real-time perspective

To put Definition5.2 on pagel5s in another way!10, [12], matroids are independence systems with the
additional property that all the maximal independent subsets have the same size (therefoog >sihce

1 <i < n, the greedy algorithm obtains the optimal solution). In light of this formulation, the parallel
implementation ofSREEDYMAX is immediate!9,12):

algorithm PARALLEL GREEDYMAX (E, S )
1. sortE, obtaining(ey, ey,... ,en) s.t.c(&) > c(e1)
2. Sg 0;rg+0
3. for i« 1...ndoin parallel
3.1. ri —ur{ey,e,...,a}
3.2 if ri_y <rithensy —sgU{e}



16 Stefan D. Bruda and Selim G. Akl

Algorithm PARALLEL GREEDYMAX uses aank oracle The functionur{ey,e,...,&} introduced by
Definition/5.1on pagél5Sand used at step 3.2 gives the size of some (hence, whe(ie&ris a matroid,
any) maximal independent set ovgs, ey, ... ,6}.

Lemma 5.3 Supposaur{es,ey,...,6} € DRMBM(poly(i), poly(i),t(i)) (i.e., ur{es,en,...,a} can be
computed by a DRMBM in timgi) using a polynomially bounded number of processors and busses).
Then,PARALLEL GREEDYMAX € DRMBM ((poly(n), poly(n),O(t(n))).

In particular, if t(i) = O(1), thenPARALLEL GREEDYMAX € DRMBM (poly(n), poly(n),O(1)).

Proof. The initial sorting (step 1) can be achieved in constant time on a DRMBM with polynomially
bounded resourceg][ It follows that step 1 is computable in constant time on a DRMBM upiig(n)
processors angoly(n) busses by Corollar@.8 on pagelQ. Steps 2 and 3.2 are trivially computable in
constant time with polynomially bounded resources.

However, each on the calls to in step 3.1 can be performed i(n) time by usingn copies of the
RMBM computingur, each of them working independently from each other. Finally, each ofthe
RMBMs communicate with one other processor. Thesew processors implement step 3.2 and report
the result. Since both the argumentusfand the result returned by this function are polynomial in size,
poly(n) busses suffice for such a communication. All the resources are polynomially bounded, and thus
PARALLEL GREEDYMAX € DRMBM (poly(n), poly(n),O(t(n))), as desired.

If t(i) = O(1), PARALLEL GREEDYMAX € DRMBM(poly(n), poly(n),0(1)) is immediate by Corol-
lary'3.8 on pagelC. a

Lemma 5.4 Let (E,S) be some independence systéins- {e;,€e,... e}, and letA be an algorithm
solving a maximization problem of the forB) pver (E,S). Denote byta(n) (tur(n)) the running time oA

(the time required to compute (E)) on a DRMBM using a polynomially bounded number of processors
and busses. Thety, (n) is a lower bound fota(n).

Proof. Lets" = {s1,%,...,%} be the solution computed A Sinces* is an optimal solution, it follows
thatur(E) = k. However, givers®, k can be computed in constant time on a DRMBM: Assume without
loss of generality that the elementssifare stored in the registers onfprocessorg;, 1 <i < n, such
that exactlyk processors hold one element fra@nheach. Then, each process@s1 <i <n, sets a
designated registef such that; = 1 if p; holds a value frons* andv; = 0 otherwise. Then, a prefix
sum over;, 1 <i < n, computek. It follows that|s*| (and thusur(E)) can be computed in constant time
givens®, since prefix sum takes constant time on RMEM][ Thereforet, (n) = O(ta(n)) (alternatively,
ta(n) = Q(tyr(n))), as desired. O

Corollary 5.5 Let M be the class of maximization problems that can be described as a matroid and for
whichur € DRMBM (poly(i), poly(i),O(1)). LetP be some maximization problem of forf) ¢ver some
independence syste(f, S). Then,

e P c DRMBM(poly(n), poly(n),0(1)),
e P e NLOGSPACE and
e P/rt € rt-PROCREWF-DRMBM (5qy (1)),

iff Pe M.



On the Relation Between Parallel Real-Time Computations and Logarithmic Space 17

Proof. The “if” part follows from Lemmabs.3 on pagel6, and the “only if” part is established by
Lemmas.4 on pagele. O

By Corollary’5.5 on pagel6 we have precisely identified—among those optimization problems that
can be expressed as independence systems—the class of such problems solvable in parallel real time. We
believe that this result may be of interest for at least two reasons:

1. On one hand, consider those independence systems—or problems that can be formulated as such—
not in M (with M as defined in Corollar.5 on pagel€). For these problems, finding an exact
solution in real time is asymptotically impossible, even if a parallel machine is available (in the
sense that the running time of ango(y(n)-processor) algorithm solving such a problem exceeds
for large enough input size any (implicit or explicit) constant deadline). In such a case, one should
probably look for either further restricting the problem (in order to bring it withr), or find a
reasonable approximation algorithm that is in NLOGSPACE.

2. On the other hand, CorollaB.5 on pagel6 easily extends previous results, as we shall show in
what follows.

5.3 Beyond speedup, revised

The problem of computing thminimum-weight spanning trg@ST) of a connected, undirected, and
weighted graph in real time is investigated/8), [where it is shown that the best approximate solution to

the MST problem returned by a sequential algorithm can be arbitrarily worse than the solution obtained

by a parallel algorithm (which actually returns the optimal solution). We shall not, however restrict
ourselves to connected graphs, since the extension to unconnected ones (when the tree becomes a forest)
is immediate.

One can notice that MST can be trivially transformed from a minimization problem into a maximization
one: just negate all the edge weights, and then add to every weight the absolute value of the maximum
edge weight. Furthermore, it is immediate that the MST problem can be expressed as a ihéfroid [
Thus, we can both tighten and extend the result fr@hiy using Corollary5.5 on pagelé.

First, the resultin2] is not tight: Time up ta€, for some0d < € < 1, is allowed for each (parallel or se-
quential) real-time computation leading to the result. This running time, however, asymptotically exceeds
any (however large) constant deadline imposed to the computation by some real-time environment. Still,
the same result holds for true real-time computations as well.

Indeed, we show in what follows that, for any real-time environment one can encounter, a parallel al-
gorithm can solve MST arbitrarily better than a sequential one. That is, while the parallel implementation
is able to return an optimal solution, even an optimal sequential algorithm can only report an approximate
result in the limited time which is available due to the real-time constraints. This result, an immediate
consequence of CorollaB.5 on pagélé, is given in Lemmédb.6 on pagel7 below.

Lemma 5.6 Let MST denote the problem of computing the minimum-weight spanning forest on undirected
and weighted graphs. Thek|ST € DRMBM(poly(n), poly(n),0(1)) (and thusMST € NLOGSPACE
MST/rt € rt-PROCREWF-DRMBM (561y(n))), and the best approximate solutionMST/rt returned by a
sequential algorithm is arbitrarily worse than the solution obtained by a parallel RMBM algorithm with
polynomially bounded resources.



18 Stefan D. Bruda and Selim G. Akl

Proof. Functionur for MST can be computed in logarithmic space (and thus in real-time on RMBM):
ur{ey,e,...,a} is simply i minus the number of connected components in the graph induced by
{e1,e,...,6}, and can thus be computed by performing a reflexive and transitive closure (which is
an NLOGSPACE-complete problerdd]). By Corollary/5.5 on pagelg, it follows that MST can be
computedexactlyin real time on an RMBM, no matter how tight the deadlines are.

However, an optimal sequential algorithm solving the same problem has a running time that cannot
accommodate even the most generous deadline, and thus a sequential algorithm to some real time variant
of MST can only guessomesolution, and the guess can be arbitrarily bad, as detailé2].in [ O

In fact, the second part of the proof of Lemi&& on pagel7 also proves that this type of behav-
ior (namely a parallel algorithm being able to compute an arbitrarily better solution than the optimal
sequential one) is not an exclusive feature of the MST problem, but it applies to many more real-time
computations instead. Therefore:

Corollary 5.7 With M as in Corollary5.5 on pagel6, the best approximate solution Ryrt returned
by a sequential algorithm, for any € M, is arbitrarily worse than the solution obtained by a parallel
RMBM algorithm with polynomially bounded resources.

In other words, the results fror2][do hold even for the tightest real time environment. In addition,
these results are not applicable only to the MST, but to a whole class of problems instead, fAmely
from Corollary5.5 on pagel6. That is, there exists not only a problem, but a whole family of them for
which a parallel implementation can do something other than speeding up computation, namely improve
the offered solution.

6 Real-time approximation schemes

As a consequence of Claifhon pagel4, the problem of finding approximate solutions computable in
real time (in those cases when the exact solution cannot be computed within the given time restrictions)
becomes a worthy pursuit. Such an approach is common in classical complexity theory. Indeed, in the
sequential case, NP-hard problems are for all practical purpose (unless P equals NP) not computable but
for the smallest instances, and thus deterministic polynomial time approximations are usually $tjught [
Similarly, this time in the context of parallel computations, efficient parallel approximations to P-complete
(that is, inherently sequential unless NC equals P) problems were also invesiidited [

The identification from Claird on pagél4 of NLOGSPACE as the class containing exactly all the prob-
lems solvable in real time naturally extends such a search for approximation algorithms: Once a problem
is shown as being likely not solvable in real time (that is, not in NLOGSPACE), then an approximate
solutions may become attractive. We now offer a incipient discussion on this matter.

First, we define the notion of “good” approximation algorithms by adapting the definitions already used
[11,112] to our framework:

Definition 6.1 Consider some algorithnA working on instancea of a minimization (maximization)
problem, and suppose that delivers a candidate solution with valugi). With Opt(i) denoting
the value of the optimal solution for input the performance ratioof A oni is Ra(i) = A(i)/Opt(i)
(Ra(i) = Opt(i)/A(i)). The absolute performance ratiof A is defined asRa = inf{r > 1|Ra(i) <
r for all instances}.



On the Relation Between Parallel Real-Time Computations and Logarithmic Space 19

An algorithmA with inputse > 0 andi € I is anapproximation schener M iff A delivers a candidate
solution with performance ratiBa(i) < 1+ ¢ for alli € M. In addition, ifA € rt-PROG poly(|i|)), thenA
is areal-time approximation schenfier 1.

The body of knowledge regarding NC approximatiodg][gives some negative results: Once it
is proved that some problem does not admit an NC approximation algorithm, it follows that no
NLOGSPACE (and thus real-time) approximation algorithm exists either, 8lh€GSPACEC NC.

Theorem 6.1 If P NC, then there exists no real-time approximation scheme for the following problems:

e Lexicografically first maximal independent s&f].

e Unit resolution (the problem whether the empty clause can be deduced from a given propositional
formula in conjunctive normal formy].

e Generability (given a finite s&V, a binary relatione onW, a subse¥ CW, andw € W, determine
whethermw is in the smallest subset df that containg/ and is closed undes) [17].

e Path systems (given a path systBrs (X,R,ST), ST C X, RC X x X x X, determine whether
there exists an admissible vertex3n[17].

e Circuit value [17].

o High degree subgraph (given a graph G and an integer k, does G contain an induced subgraph with
minimum degree at least k?) fkr> 3 [17].

e Linear programming, in both the following cases: the approximation solution should be a vector
close to the optimal one, and the approximation solution seeks the objective function to have a value
close to optimall1€].

Proof. It has been proven (reference to proofs are given within the theorem) that any approximation
scheme for these problems is P-complete. SigeNC andNSPACEC NC, Claim1 on pageldimplies
that the above problems do not admit any real-time approximation scheme. O

6.1 Bin packing

We focus now our attention to th®n packingproblem. True, there is apparently little hope to find real-
time approximation schemes for this problem, since bin packing is NP-complete. However, bin packing
is closely related to certain scheduling problems (since the item to be packed can be viewed as tasks to be
scheduled), and it is thus conceivable that real-time approximation algorithms can be of use for scheduling
tasks in real time on a parallel machine (the utility of such a processing being evident). On the other hand,
this time with respect to the feasibility of tackling bin packing in a real-time environment, we note that
good NC approximation schemes for this problem already e3jist

The input for the bin packing problem consistsnifitems, each of size within intervg0,1). Then
items should be packed in a minimal number of bins of unit capacity.

One of the successful approaches in developing sequential (thatR¥ bin packing approximation
algorithms is the use of simple heuristics. In this respect, one should mentidinsthi& decreasing
(FFD) heuristic, which considers the items in nondecreasing order of their size, and places each item



20 Stefan D. Bruda and Selim G. Akl

into the first available (that is, with enough free space) bin. Even if simple, the length of the packing
returned by FFD, of at modtl/9 x Opt+ 3 (whereOpt is the length of the optimal solution), is a good
approximation, qualifying FFD as an approximation scheme. Still, it is not only intuitive that FFD is
inherently sequential (that is, P-complete):

Proposition 6.2 [3] Given a list of items, each of size between 0 and 1, in nonincreasing order, and two
indicesi andb, it is P-complete to decide whether the FFD heuristic will packithatem into thebth
bin. This is true even if the item sizes are represented in unary.

Even if FFD is inherently sequential, an NC algorithm that achieves the same performance as FFD
(although by using different techniques) is given3h [This algorithm works in two stages, as follows:

1. The first stage packs all the items that have a size of atl¢@sSuch a stage starts Bprtingthe
list of items in nonincreasing order. Then, a constant number of passes are performed, each pass
involving two algorithms: &) mergetwo sorted lists ofi elements each into a sorted list, aijliq
a string of lengtm of opening and closing parenthesésd the matching pairs.

2. Inthe second stage, the remaining items are packed. This stage involves a (relatively large) number
of parallel prefix computations

Theorem 6.3 Bin packing admits a real-time approximation schefvsich thatA(i) < 11/9x Opt(i) +3
for any instancae.

Proof. We follow the algorithm from3], showing how this algorithm can be implemented in real time.
According to TheorerB.6on pagéll, we have a choice of showing that this algorithm is in NLOGSPACE
or in DRMBM (poly(n), poly(n),0(1)). We chose the latter variant.

First, we note that sorting can be done in constant time on an (nondirected or directed) CREW RMBM
using poly(n) processors angdoly(n) buses20]. Then, it is immediate that merging two sequences into
a sorted sequence is also computable in constant time on RMBM. Indeed, the quick and dirty method of
sorting (using the algorithm mentioned above) the two lists concatenated together will do the trick.

The problem of matching parentheses can be implemented in two steps as follows: First, the unmatched
parentheses can be eliminated by a parallel prefix computation. Then, there exists a constant time algo-
rithm on DRN usingpoly(n) processors for matching the remaining sequence of parentligsétofv-
ever, this implies the existence of a similar algorithm on RMBM with polynomially bounded number of
processors and buses, according to CorolBaryon pagelo.

Thus, the only algorithm that is still needed is the parallel prefix computation, which is in
CREWRMBM(poly(n), poly(n),0(1)) according to2Q] (in fact, such an algorithm is the basis for the
aforementioned sorting algorithm).

In conclusion, all the algorithms used by the two stages on the NC approximation schem@jfrom [
are inCREWRMBM(poly(n), poly(n),0(1)). Since these algorithms are applied a constant number of
times, the whole processing is GREW RMBM(poly(n), poly(n), O(1)) and thus in rtPROG poly(n)).

This completes the proof. O

In passing, one should note that the algorithm from the proof of The@&rapparently requires a
large (albeit constant) amount of time to complete. However, such a construction is enough to prove
that bin packing admits a real-time approximation scheme. Indeed, the existence of an algorithm in
CREWRMBM(poly(n), poly(n),O(1)) implies the existence of another algorithm, solving the same



On the Relation Between Parallel Real-Time Computations and Logarithmic Space 21

problem, but this time iIlCRCWF-DRMBM (poly(n), poly(n),0(1)), and whose running time is very
small, as shown in Corollai8.8 on pagelQ. True, we do not offer a constructive proof for this corol-
lary, and thus th€RCWF-DRMBM (poly(n), poly(n), O(1)) algorithm cannot be effectively constructed
using only the results from this paper. Still, if needed, we believe that, although not a trivial matter,
developing such a constructive transformation is feasible.

7 Conclusions

Recently, we addressed a number of questions associated with real-time computations featuring implicit
deadlines8]. In this paper, we focused our attention on computations with explicit deadlines. Specifically,
we considered computations that can be performed within specific, fixed deadlines for any input size.
Given any language that can be accepted by a machine using logarithmic work space, we showed in
Theoremd.1 on pagel?2 that such a language can be accepted by a parallel machine with polynomially
bounded resources, in the presencarof(that is, however tight) real-time constraints.

Theorem4.3 on pagell is another interesting result: Even a timed language RikesuiTy, whose
acceptance requires considerable computational effort, can be accepted in logarithmic space once the
real-time constraints are dropped. This allows us to state (Aaom pagel4, which offers a nice coun-
terpart of the parallel computation thesi2[[15]. In this thesis, NC is conjectured to contain exactly
all the computations that admit efficierpdly(n) processors and polylogarithmic running time) parallel
implementations. By contrast, we conjecture that NLOGSPACE contains exactly all the computations
that admit efficient poly(n) processors) real-time parallel implementations.

As well, we considered the class of maximization problems over independence systems, showing that a
problem pertaining to this class is solvable in real time iff it is a matroid and the size of an optimal solution
is computable in real-time. Given this result, we showed that, indeed, there exists not only a problem, but
a whole family of them for which a parallel implementation can do something other than speeding up
computation, namely unboundedly improve the offered solution.

In light of Claim /1 on pagel4, the following research direction becomes useful: Which are those
problems that, although possibly not solvable in the real-time environment imposed by some real-time
application, admit “good” approximate solutions provably achievable in any real-time environment? Do
they form a well-defined complexity class? If so, which are the problems pertaining to such a class?
This paper offers a solid basis for the pursuit of this direction, since we identify here a class of candi-
dates for approximating algorithms. In addition, this class of candidates is either NLOGSPACE or F-
DRMBM(poly(n),poly(n),0(1)), whichever is more natural for the given problem, since they are in fact
identical as shown by Theore®&€ on pagelQ. As a starter for such a direction, along with identifying
some problems not admitting real-time computable approximate solutions, we showed that real-time ap-
proximation schemes do exists. Interestingly enough, we found with relative ease such an approximation
algorithm for quite a hard (in fact, NP-complete) problem, namely bin packing. This is a nice argument
in favor of the relations that we discovered between NLOGSPACE, RMBM, and real-time computations,
and a good motivation for the use of timeslanguages in the study of (approximate or not) real-time
computations.

We also determined the computational power of DRMBM running in constant time. We showed that
DRMBM and DRN with constant running time have the same computational power. In addition, showed
that no conflict resolution rule is more powerful than Collision. According to this result, the discussion re-
garding the practical feasibility of rules like Priority or Combining on spatially distributed resources such



22 Stefan D. Bruda and Selim G. Akl

as a buses is no longer of interest. Indeed, such rules are not only of questionable feasibility, but simply
not necessary as well. Finally, we identified a gap in the complexity hierarchy of RMBM computations as
well: As far as constant time computations are concerned, there is no need for a large bus width; instead,
buses composed of single wires are sulfficient.

One interesting open problem naturally arises from the characterization described in the above para-
graph: does a form of Corolla/¥.8 on pagelQ hold for other models of parallel computations? On one
hand, we showed in Corolla®3.€ that unrealistic rules like Priority and Combining do not add compu-
tational power. However, this result is obtained for the restricted class of DRMBMSs running in constant
time. Thus, we wonder whether such a result holds for (a) DRMBMs in general, not only those with
constant running time, and (b) for other models of parallel computation (RN, PRAM, etc.). On the other
hand, we wonder whether the bus width can be bounded for DRNs running in constant time as it has been
bounded in the case of DRMBMSs. In other words, can the bus width in a DRN be bounded by a constant?

References

[1] S. G. AKL, Parallel Computation: Models and MethqdBrentice-Hall, Upper Saddle River, NJ,
1997.

[2] S.G. AKLAND S. D. BRUDA, Parallel real-time optimization: Beyond speed®arallel Processing
Letters, 9 (1999), pp. 499-509. For a preliminary version see http://www.cs.queensu.ca/home/akl/-
techreports/beyond.ps.

[3] R. J. ANDERSON E. W. MAYR, AND M. K. WARMUTH, Parallel approximation algorithms for
bin packing Information and Computation, 82 (1989), pp. 262-277.

[4] Y. BEN-ASHER, K.-J. LANGE, D. PELEG, AND A. SCHUSTER The complexity of reconfiguring
network modeldnformation and Computation, 121 (1995), pp. 41-58.

[5] S. D. BRUDA AND S. G. AL, Real-time computation: A formal definition and its applicaticias
appear in International Journal of Computers and Applications.

(6]

, On the necessity of formal models for real-time parallel computatiBasallel Processing
Letters, 11 (2001), pp. 353 — 361.

[7 , Parallel real-time complexity: A strong infinite hierarchig Proceedings of VIII International

Colloguium on Structural Information and Communication Complexity, Vall dei&\ Spain, June

2001, Carleton Scientific, pp. 45-59. For an extended version see http://www.cs.queensu.ca/home/-

bruda/www/pursuit/.

(8]

, Pursuit and evasion on a ring: An infinite hierarchy for parallel real-time systé@rheory of
Computing Systems, 34 (2001), pp. 565-576.

[9] S. A. Cook, A taxonomy of problems with fast parallel algorithnisformation and Control, 64
(1985), pp. 2-22.

[10] T. H. CorRMEN, C. E. LEISERSON AND C. STEIN, Introduction to AlgorithmsMIT press, Cam-
bridge, MA, 2 ed., 2001.



On the Relation Between Parallel Real-Time Computations and Logarithmic Space 23

[11] M. R. GAREY AND D. S. HNSON, Computers and Intractability: A Guide to the Theory of NP-
CompletenessV. H. Freeman and Company, 1979.

[12] R. GREENLAW, H. J. HOOVER, AND W. L. Ruzo, Limits to Parallel Computation: P-
Completeness Theqgr@xford University Press, New York, NY, 1995.

[13] R. KANNAN AND B. KORTE, Approximative combinatorial algorithm# Mathematical Program-
ming, R. W. Cottle, M. L. Kelmanson, and B. Korte, eds., Elsevier Science Publishers, Amsterdam,
The Nederlands, 1981, pp. 195-248.

[14] N. NAGY, The maximum flow problem: A real-time approabtaster’s thesis, Department of Com-
puting and Information Science, Queen’s University, Jan. 2001.

[15] I. PARBERRY, Parallel Complexity Theorydohn Wiley & Sons, New York, NY, 1987.

[16] M. J. SERNA, Approximating linear programming is log-space complete folrformation Pro-
cessing Letters, 37 (1991), pp. 233-236.

[17] M. J. SERNA AND P. G. S IRAKIS, The approximability of problems complete fgri Optimal Al-
gorithms, International Symposium Proceedings, H. Djidjev, ed., Varna, Bulgaria, May—June 1989,
pp. 193-204. Springer Lecture Notes in Computer Science 401.

[18] A. SzepieTowsKkl, Turing Machines with Sublogarithmic Spa&pringer Lecture Notes in Com-
puter Science 843, 1994.

[19] A. S. TANENBAUM, Computer NetworkdPrentice Hall, Upper Saddle River, NJ, 3 ed., 1996.

[20] J. L. TRAHAN, R. VAIDYANATHAN , AND C. P. SJBBARAMAN, Constant time graph algorithms on
the reconfigurable multiple bus machjrimurnal of Parallel and Distributed Computing, 46 (1997),
pp. 1-14.

[21] J. L. TRAHAN, R. VAIDYANATHAN , AND R. K. THIRUCHELVAN, On the power of segmenting and
fusing buseslournal of Parallel and Distributed Computing, 34 (1996), pp. 82-94.

[22] UsSeENET, Comp.realtime: Frequently asked questipngersion 3.4 (May 1998). http://-
www.fags.org/fags/realtime-computing/fag/.

[23] H. YAMADA , Real-time computation and recursive functions not real-time compytdite Trans-
actions on Electronic Computers, EC-11 (1962), pp. 753—760.



