
Discrete Mathematics and Theoretical Computer Science(subm.), by the authors, 2–rev

On the Relation Between Parallel Real-Time
Computations and Logarithmic Space†

Stefan D. Bruda and Selim G. Akl

Department of Computing and Information Science, Queen’s University, Kingston, Ontario, Canada K7L 3N6;
Email: {bruda,akl}@cs.queensu.ca

We show that all the problems solvable by a nondeterministic machine with logarithmic work space (NLOGSPACE)
can be solved in real time by a parallel machine, no matter how tight the real-time constraints are. We also show that,
once real-time constraints are dropped, several other real-time problems are in effect solvable in nondeterministic
logarithmic space. Therefore, we conjecture that NLOGSPACE contains exactly all the computations that admit
efficient (poly(n) processors) real-time parallel implementations. The issue of real-time optimization problems over
independence systems is also investigated. We identify the class of such problems that are solvable in real time.
Finally, we address the problem of obtaining approximate real-time solutions for problems not solvable in real time.
In the process, we determine the computational power of directed reconfigurable multiple bus machines (DRMBMs)
with polynomially bounded resources (processors and buses) and running in constant time, which is found to be
exactly the same as the power of directed reconfigurable networks of polynomially bounded size and constant running
time. In addition, we show that sophisticated and of questionable feasibility write conflict resolution rules (such as
Priority or even Common) do not add computational power over the Collision rule, and are thus unnecessary, and that
a bus of width 1 (i.e., a wire) suffices for any constant time computation on DRMBM.

Keywords: real-time computation, timedω-languages, parallel complexity theory, reconfigurable multiple bus ma-
chines, approximation schemes, independence systems, matroids, bin packing

1 Introduction
The area of real-time computations has a strong practical grounding, in domains like operating systems,
databases, and the control of physical processes. Besides these practical applications, however, research in
this domain is primarily focused on formal methods and on communication issues in distributed real-time
systems. Considerably less work has been done in the direction of algorithms and complexity theory.

One direction within this research area was, however, started by the introduction ofwell-behaved timed
ω-languages[5]. Unlike previous models of real-time computation (such as, for example, thereal-time
Turing machine[23]), timed languages bridge the long standing gap between the complexity theorists
and the real-time systems community. Indeed, the systems researchers use “real-time” to refer to those
computations in which the notion of correctness is linked to the notion of time [22]. In theoretical circles,

†This research was supported by the Natural Sciences and Engineering Research Council of Canada.

subm. to DMTCSc© by the authors Maison de l’Informatique et des Mathématiques Discr̀etes (MIMD), Paris, France

2 Stefan D. Bruda and Selim G. Akl

on the other hand, this term is used as a synonym foron-lineor linear time. While well-behaved timedω-
languages create a formal model, they also capture all the features of real-time computations as understood
by the systems community. Such a claim is supported by the work from [5], where the formalism is used
in order to model real-time computations encountered in highly practical areas. Real-time complexity
classes, as well as complexity theoretic properties of real-time computations, are studied in [7, 8]. In
particular, it is shown that real-time computations form an infinite hierarchy with respect to the number
of processors, and such a hierarchy is independent of the underlying parallel abstract machine.

However, the real-time computations analyzed in [8] do not exhibit explicit deadlines. Instead, the real-
time qualifier is given to those computations by the input (and its real-time characteristics). Still, most
practical applications do require that computations are carried output within well-defined deadlines. For
this reason, our main focus in this paper consists in computations with explicit deadlines. Based on the
theory of timedω-languages, we study (classical) languages that can be recognized in nondeterministic
logarithmic space (NLOGSPACE), augmented with real-time constraints (including but not limited to
deadlines). We show that all such computations can be carried out successfully in parallel, no matter
how tight the time constraints are. Conversely, we show that, although hard to recognize in real time, the
languages developed and analyzed in [8] can be accepted in deterministic logarithmic space once the time
constraints are eliminated. Thus, we conjecture that logarithmic space contains in effect exactly all the
computations that admit efficient (poly(n) processors) real-time parallel implementations.

Supported by such a conjecture, we identify the class of optimization problems over independence
systems that are solvable in real-time, and we are able thus to extend the results obtained in [2]. Indeed,
we show that the solution obtained by a parallel algorithm is arbitrarily better than the solution reported
by a sequential one not only for the real-time minimum-weight spanning tree (as shown in [2]), but for
any real-time maximization problem over a matroid for which the size of the optimal solution can be
computed in real time. As well, we identify as a promising research direction the process of identifying
those problems that, even if not solvable in the real-time environment imposed by their use, admit good
approximate, real-time computable solutions. In particular, we show that thebin packingproblem does
admit a good approximation parallel real-time algorithm, even if the exact variant is NP-complete.

Besides these main results, we also offer a tight characterization of constant time computations on
reconfigurable multiple bus machines(RMBMs). We show that constant time directed RMBMs have the
same computational power as the directedreconfigurable networks, and that there is no need for such
powerful write conflict resolution rules as Priority or Common. Indeed, they do not add computational
power over the easily implementable Collision rule. We also find an interesting gap result. Indeed, as far
as constant time computations on RMBMs are concerned, we show that a unitary bus width is enough.
That is, a simple wire as bus will do for all constant time computations on directed RMBM.

The results in this paper are presented as follows: In Section3 on page6 we show that exactly all
nondeterministic logarithmic space languages can be recognized in constant time using a directed fusing
reconfigurable multiple bus machine (F-DRMBM) withpoly(n) processors andpoly(n) buses, each of
width 1. Based on this result, we establish the computational power of RMBMs. Our main results on real-
time computations are the subject of Section4 on page11, where we establish that any NLOGSPACE
language is computable in real time on RMBMs, no matter how tight the real-time restrictions actually
are, and we state the aforementioned conjecture. The issue of optimization problems over independence
systems is considered in Section5 on page14. We sketch a possible future research direction on approxi-
mation real-time algorithms in Section6 on page18, and we conclude in Section7 on page21.

On the Relation Between Parallel Real-Time Computations and Logarithmic Space 3

2 Preliminaries
For some setΣ, P (Σ) stands for the power set ofΣ, that is,P (Σ) = 2Σ. The cardinality ofN, the set of
natural numbers is denoted byω. poly(n) expresses the upper bound for polynomial functions of one
variablen, that is,poly(n) = nO(1). The empty word is denoted byλ.

Given some total functionf : N→ N, we denote bySPACE(f (n)) (NSPACE((f (n)))) the set of lan-
guages that are accepted by a deterministic (nondeterministic) Turing machine which uses at mostO(f (n))
space (not counting the input tape) on any input of lengthn. LOGSPACE (NLOGSPACE) is a shorthand
for SPACE(logn) (NSPACE(logn)). The classP (NP) contains exactly all the languages accepted in de-
terministic (nondeterministic) polynomial time. Finally, NC denotes the class of languages accepted in
polylogarithmic time by some parallel machine usingpoly(n) processors. Given some classC of lan-
guages (that is, boolean functions) and some (non-boolean) functionf , we say by abuse of notation that
f ∈C whenever the extension from language to function does not alter the complexity of computation.

2.1 Timed ω-languages

A sequenceτ = τ1τ2 . . .∈Nω is atime sequenceif it is an infinite sequence of positive values, andτi ≤ τi+1

for all i > 0. Any subsequence of a time sequence is a time sequence. Awell-behavedtime sequence is a
time sequence for which, for everyt ∈ N, there exists some finitei ≥ 1 such thatτi > t. A (well-behaved)
timed ω-word over some alphabetΣ is a pair(σ,τ), whereτ ∈ Nk is a (well-behaved) time sequence,
k∈ N∪{ω}, andσ ∈ Σk. Someτi from τ represents the time at whichσi becomes available as input. For
some timedω-wordw = (σ,τ), detime(w) = σ. By abuse of notation,detime(L) = {detime(w)|w∈ L}.

The concatenation of two timed words is defined as the union of their sequences of symbols, ordered in
nondecreasing order of their arrival time. Given two timedω-languagesL1 andL2, the concatenation ofL1

andL2 is L1L2 = {w1w2|w1 ∈ L1,w2 ∈ L2}. The notation∏n
i=1wi (∏n

i=1Li) is a shorthand forw1w2 · · ·wn

(L1L2 . . .Ln).
A real-time algorithmA consists in afinite control, aninput tapethat always contains a (not necessarily

well-formed) timedω-word, and anoutput tapecontaining symbols from some alphabet∆. The input
tape has the same semantics as a timedω-word. During any time unit,A may add at most one symbol to
the output tape. The content of the output tape ofA working onw is denoted byO(A,w). There exists
a designated symbolf ∈ ∆. A real-time algorithmA acceptsthe timedω-languageL if, on any inputw,
|O(A,w)| f = ω iff w∈ L.

Let w= (σ,τ) be some timedω-word. Fori0 = 0 and anyj > 0, let sj = σi j−1+1σi j−1+2 . . .σi j , such that
(a) τi j−1+1 = τi j−1+2 = · · · = τi j , and (b) τi j+1 6= τi j . Then, the size|w| of w is |w| = maxj>0 |sj |. Given
a total functionf : N→ N, and some model of parallel computationM, the class rt-PROCM(f) includes
exactly all the well-behaved timedω-languagesL for which there exists a real-time algorithm running on
M that acceptsL and uses no more thanf (n) processors on any input of sizen. By convention, the class
rt-PROCM(1) of sequential real-time algorithms is invariant withM.

Pursuit and evasion on a ring For k > 0, the languagesLk, modeling thek-dimensional version of the
pursuit and evasion on a ring problem [6] are developed in [8]. We shall give here a very brief overview
of these languages, directing the interested reader to [8]. For a givenk, and for given positive constants
r, p, andc, Lk is a well-behaved subset of the languageL0 ∏i>0Lci, wheredetime(L0) ∈ {a,b}r . Each
wi ∈ Lci denotes the move made by the pursuee at timet = ci, under the form of amodulok directionand
a sequenceof at mostp a’s and/orb’s. The sequence is to be inserted into thej-th segment (of length

4 Stefan D. Bruda and Selim G. Akl

r/k and viewed as a conceptual circle) of the initial word expressed byw0 ∈ L0, according to the given
direction (bothj and the direction being given by what we called above “the modulok direction.”

A word w ∈ Lk is accepted iff it can be decided at some finite timeT that the word available at that
moment in time has an equal number ofa’s andb’s (intuitively speaking, the accepting real-time algorithm
catches the pursuee—or the input—at timeT). In order to eliminate the ambiguity generated by the
somehow generic notations used in [8], we shall denote henceforthLk by PURSUITk, for anyk > 0.

2.2 Models with reconfigurable buses

Two main models with reconfigurable buses have been developed in the literature: thereconfigurable
network(or RN for short) [4] and thereconfigurable multiple bus machine(or RMBM) [21]. While both
models have similar characteristics, RMBM features a clear separation between buses and processors.
Throughout this paper, RMBM is thus our model of choice. We shall, however, briefly define RN, since
we also refer to this model.

The reconfigurable multiple bus machine An RMBM [20, 21] consists a set ofp processorsandb
(electronic, nondirectional)buses. For each processori and busb there exists aswitch controlled by
processori. By these switches, a processor have access to the buses by being able to read or write from/to
any bus. As well, a processor may be able tosegmenta bus, obtaining thus two independent, shorter buses.
Any processor is allowed tofuseany number of buses together by using afuse lineperpendicular to and
intersecting all the buses. A fuse line can be electrically connected to any number of buses, simultaneously.
Two buses that are connected to the same fuse line are said to be fused, and act as a unique, longer bus.

DRMBM, the directedvariant of RMBM [21], is identical to the undirected model (in particular, the
buses continue to be nondirectional), except for the definition of fuse lines. In a DRMBM, each processor
features two fuse lines (down and up) perpendicular to and intersecting all buses. At the processor’s
control, each of these fuse lines can be electrically connected to any bus. Assume that, at some given
moment, busesi1, i2, ..., ik are all connected to the down (up) fuse line of some processor. Then, a signal
placed on busi j is transmitted in one time unit to all the busesi l such thatl ≥ j (l ≤ j). It is argued in [20]
that the fuse lines must use active components anyway, such that a directional connection is as practically
realizable as a nondirectional one.

For ease of presentation, one can consider RMBM as a special case of DRMBM, in which the up and
down fuse lines are “synchronized,” in the sense that the down fuse line of some processorpi is connected
to some busj iff the up fuse line ofpi is connected to busj. We shall adopt in the following this uniform
characterization, and thus we assume that each processor in any RMBM variant has two (up and down)
fuse lines, even if these fuse lines may in fact act as one bidirectional line. Furthermore, as we shall
emphasize below, it is clear from this construction that, for any nondirectional RMBM there exists a
DRMBM simulating it, that uses the same amount of resources (time, processors, buses, bus width).

If some RMBM (DRMBM) is not allowed to segment buses, then this restricted variant is denoted by
F-RMBM (F-DRMBM).

As far as the process of reading and writing on the buses is concerned, one can distinguish between
CREW (concurrent read, exclusive write) and CRCW (concurrent read, concurrent write) RMBMs. The-
oretically, exclusive read, exclusive write (EREW) RMBMs are possible as well, but we shall not consider
such, since we believe that the ability of all the processors to listen to a common bus is a trivial feature
(that is, some extra effort in order to insure exclusive read appears to be necessary).

For CRCW (concurrent read, concurrent write) RMBMs, one should establish a conflict resolution rule

On the Relation Between Parallel Real-Time Computations and Logarithmic Space 5

for the process of writing a value to some bus. The most realistic such a rule is Collision (indeed, such
a technique is widely used nowadays in the MAC network layer protocols, like CSMA-CS from which
the Ethernet protocol is derived [19]), where two values simultaneously written on a bus result in the
placement of a special collision value on that bus. Other conflict resolution rules (used for either RMBM
or other models of parallel computation) are Common (two processors are allowed to simultaneously
write on the bus only if the values written by them are identical), Arbitrary (some arbitrary processor
succeeds in writing on the bus and the write request of all the others are discarded), Priority (the write
request of the highest priority processor is the only one to succeed), and Combining (a combination of the
values written by all the processors is placed on the bus). The use of the latter three rules for a bus (i.e., a
spatially distributed resource) is indeed questionable. We will, however, consider all these possible rules.
On one hand, this is done for completeness reasons. On the other hand, these rules are in fact equivalent,
at least for the computational settings we are interested in (directed RMBMs with constant running time),
as we shall show in Corollary3.8 on page10. We restrict only the Combining mode, requiring that the
combining operation be associative and computable in nondeterministic linear space. We believe that
these are reasonable restrictions, as they clearly hold for any reasonable combining operation.

As for most models of computation, the word size of each processor in an (D)RMBM is limited to
O(logn) [21]. Furthermore, we are interested in constant time computations. Thus, we can assume
without loss of generality that a processor has only a constant number of internal registers (indeed, even if
there are an infinite number of registers, a processor can access only a constant number of them given the
time restrictions). It follows that theinternal configurationor internal stateci of some processorpi (which
contains the content ofpi ’s registers and the state ofpi ’s finite control) in an RMBM can be expressed
by a word of sizeO(logn). For similar reasons (O(logn) word size and constant running time) and by
information theoretic arguments, it follows that, at any given time, one can fully describe which buses are
fused together or segmented by a given processor, using a word of sizeO(logn). These limitations can be
formally captured by introducing the concept ofuniform familyof RMBMs, similar to the concept of RN
family [4].

An RMBM (DRMBM, F-DRMBM, etc.) family R = (Rn)n≥1 is a set containing one RMBM
(DRMBM, F-DRMBM, etc.) construction for eachn > 0. A family R solves a problemP if, for any
n, Rn solves all inputs forP of sizen.

A description of some (D)RMBM family usingp(n) processors andb(n) buses is a list ofp(n) tuples
(i,ci ,upi ,downi ,segmenti), 1≤ i ≤ p(n). Such a tuple describes the configuration of processorpi . Specif-
ically, ci denotes the internal configuration ofpi , andupi (downi , segmenti) represents a set of rules that
determine which buses are fused by the up fuse line (fused by the down fuse line, segmented), depend-
ing on ci . In the case of F-RMBM or F-DRMBM, the setsegmenti is always empty (no buses are ever
segmented).

We say that some RMBM familyR is a uniform RMBM family(or thatR is uniformly generatedin
SPACE(log(p(n)×b(n)))) if there exists a Turing machineM that, givenn, produces the description of
Rn usingO(log(p(n)×b(n))) cells on its working tape. Since we deal only with uniform families here,
we henceforth drop the “uniform” qualifier, with the understanding that any RMBM family described in
this paper is uniform.

Assume that some familyR = (Rn) solves a problemP, and that eachRn, n > 0, usesp(n) pro-
cessors,b(n) buses, and has a running timet(n). We say then thatP ∈ RMBM(p(n),b(n), t(n)) (or
P ∈ F-DRMBM(p(n),b(n), t(n)), etc.), and thatR has size complexityp(n)× b(n) (it is customary
[14, 21] to consider the size of a network as being the product between the number of processors and

6 Stefan D. Bruda and Selim G. Akl

the number of buses) andtime complexityt(n).
It should be noted that, as shown above, a directed RMBM can simulate a nondirected RMBM by

simply keeping all the up and down fuse lines synchronized with each other:

Observation 1 X YRMBM(x(n),y(n),z(n))⊆ X YDRMBM(x(n),y(n),z(n)) for anyx,y,z : N→ N, X ∈
{CRCW,CREW}, andY ∈ {F-,λ}.

The bus widthof some RMBM (DRMBM, etc.) denotes the maximum size of a word that may be
placed (and read) on (from) any bus in one computational step. It is immediate that the bus width of any
RMBM from an RMBM family is upper bounded byO(logn).

The reconfigurable network An RN [4] is a network of processors that can be represented as a con-
nected graph whose vertices are the processors and whose edges represent fixed connections between
processors. Each edge incident to a processor corresponds to a (bidirectional) port of the processor. A
processor can internally partition its ports such that all the ports in the same block of that partition are
electrically connected (or fused) together. Two or more edges that are connected together by a proces-
sor that fuses some of its ports form a bus which connects ports of various processors together. CREW,
Common CRCW, Collision CRCW, etc. are defined as for the the RMBM model.

ThedirectedRN (DRN for short) is similar to the general RN, except that the edges are directed. The
concept of (uniform) RN family is identical to the concept of RMBM family. The classRN(s(n), t(n))
(DRN(s(n), t(n))) is the set of problems solvable by RN (DRN) uniform families withs(n) processors
(s(n) is also called thesize complexity) andt(n) running time.

3 RMBM and NLOGSPACE computations
In this section, we first show that thegraph accessibility problem(GAP) can be solved by a DRMBM in
constant time. Then, we investigate the relation between RMBM and NLOGSPACE computations. We
show that RMBMs with polynomially bounded resources and constant running time recognize exactly all
the languages in NLOGSPACE.

Definition 3.1 (Graph accessibility problem)GAP1,n denotes be the following problem: Given a di-
rected graphG = (V,E), V = {1,2, ...,n} (expressed, for example, by the (boolean) incidence matrixI),
determine whether vertexn is accessible from vertex1. In general, the problem of determining whether
vertex j is accessible from vertexi is denoted byGAPi, j .

Lemma 3.1 GAP1,n ∈ CRCWF-DRMBM((n2−n)/2,n,2). Furthermore, the F-DRMBM family solving
GAP1,n uses the Collision resolution rule and has bus width1.

Proof. The following RMBM algorithm is a variant of the algorithm that computes the shortest path
in a directed graph [14] (which is itself an adaptation of the algorithm for the minimum spanning tree
[20]). However, we are not interested in the length of an eventual path, so that our construction requires
considerably less resources.

For convenience, each processor is denoted bypi j , 1≤ i < j ≤ n. When we say that some processor
fuses busesk andl , we imply that this fusion is directional, such that a signal placed on busk is seen on
busl , but not vice versa. We assume that each processorpi j knows the value of bothIi j andI ji , whereI is
the incidence matrix. Then, the algorithm performs the following steps:

On the Relation Between Parallel Real-Time Computations and Logarithmic Space 7

1. Each processorpi j , 1≤ i < j ≤ n fuses busesi and j iff Ii j = True. Simultaneously,pi j fuses buses
j andi iff I ji = True.

2. p13 places a signal on bus1, and p12 listens to busn. p12 reports‡ True if it receives some sig-
nal (either the original one emitted byp13 or the signal corresponding to a collision), andFalse
otherwise.

Note that, even if only one processor writes on the busses, the algorithm cannot be implemented on
an exclusive-write RMBM, as the signal emitted byp13 may reach some bus on more than one path. We
must show thatp12 reports true iff vertexn is accessible from vertex1. In fact, it can be easily proved
by induction on the length of the path froms to t that, for anys, t, 1≤ s, t ≤ n, a signal placed on bus
s reaches bust iff vertex t is accessible from vertexs, and this completes the proof (just puts= 1 and
t = n). Indeed, both steps of the algorithm can be clearly performed in one machine cycle each. As well,
note that the content of the signal emitted byp13 is immaterial, so that a bus width1 suffices. 2

Corollary 3.2 If the input graphG = (V,E) of GAP1,n is given by a list of verticesL instead of an inci-
dence matrix, thenGAP1,n ∈ CRCWF-DRMBM(m,n,O(1)), wherem= |E| andn = |V|.

Proof. Identical to the algorithm in the proof of Lemma3.1on page6, except that, at step 1 of the above
algorithm, processorpi j fuses busesi and j iff (i, j) ∈ L. 2

It is worth mentioning that the algorithm presented in [20] uses a CREW DRMBM (as opposed to
the CRCW F-DRMBM used in Lemma3.1 on page6 and Corollary3.2). Furthermore, this algorithm
computes the shortest path between two vertices. Therefore, it implicitly computesGAP1,n. This lets us
conclude thatGAP1,n ∈CREWDRMBM(2mn,n2,O(1)). However, in what follows, we will use the result
based on the CRCW F-DRMBM since, on one hand, it uses resources more efficiently, and, on the other
hand, we believe that a Collision conflict resolution rule is just as realistic as exclusive write.

Consider now some languageL in NSPACE(logn). It follows that there exists a nondeterministic Turing
machineM = (K,Σ,δ,s0) that acceptsL and usesO(logn) working space (by abuse of notation, we call
M anNSPACE(logn), or NLOGSPACE, Turing machine). Without loss of generality, consider that the
working (and input) alphabet ofM is Σ = {0,1}. Let k be the number of states ofM, that is,k = |K|. The
transition function is denoted byδ, δ : (K×Σ×Σ)→ P ((K∪{h})×(Σ∪{L,R})×{L,R}), and the initial
state bys0. For the sake of simplicity, we consider thatM has one working tape only (the extension for
multiple working tapes is immediate [12, 18]). It should be noted thatM also has a (read-only) input tape.

A configurationof M working on inputx is defined as containing the current state, the content of its
tapes, and the head position on each tape. Denote such a configuration by(s, i,w, j), wheres is the state,
i and j are the positions of the heads on input and working tape, respectively, andw is the content of the
working tape. Note that the content of the input tape is established at the beginning of the computation
(indeed, the input tape contains the inputx) and does not change. Therefore, the input tape does not
change the configuration, except for its head position. For two configurationsv1 andv2, we writev1 ` v2

iff v2 can be obtained by applyingδ exactly once onv1.
SinceM is nondeterministic, the set of possible configurations ofM working onx forms a directed

graph (denote it byG(M,x) = (V,E)) as follows: V contains one vertex for each and every possible
configuration ofM working onx, and(v1,v2)∈E iff the configuration corresponding tov2 can be reached

‡ In fact, neitherp13 nor p12 have any special characteristics, and any pair of distinct processors will do.

8 Stefan D. Bruda and Selim G. Akl

from the configuration corresponding tov1 in one step ofM (that is, iff v1 ` v2). In the following, we
refer to both a configuration and the vertex denoting that configuration in the associated graph simply as
“configuration,” as long as the exact meaning is understood from the context.

It is clear thatx∈ L iff some configuration(h, ih,wh, jh) is accessible inG(M,x) from the initial config-
uration(s0, i0,w0, j0). One should also note that there arepoly(n) possible configurations ofM. Indeed,
for any configuration(s, i,w, j), i can taken = |x| values. Furthermore, since|w| = O(logn), there are at
mostpoly(n) possible contents of the working tape, andj can takeO(logn) values.Given that the set of
statesK is fixed, the number of possible configurations ispoly(n).

Therefore, for any languageL ∈ NSPACE(logn) and for anyx, determining whetherx ∈ L can be
reduced to the problem of computing the graph accessibility problem (GAP) for the graphG(M,x) =
(V,E), whereM is some Turing machine decidingL, M ∈ NSPACE(logn). In fact, a stronger result is
immediate: Givenx, L, M, andG(M,x) as above, we consider without loss of generality that the initial
state is represented by vertex1 and the (unique) final state by vertexn in G(M,x). Then, any problem in
NSPACE(logn) can be reduced toGAP1,n. Indeed, we are interested only in the reachability of vertexn
(final state) from vertex1 (initial state).

Lemma 3.3 Fix a languageL ∈ NSPACE(logn). Let M = (K,Σ,δ,s0) be anNSPACE(logn) Turing
machine that acceptsL. Then, given some wordx, |x|= n, there exists a CREW F-DRMBM algorithm that
computesG(M,x) (as an incidence matrix) inO(1) time, and usespoly(n) processors andpoly(n) buses
of width1.

Proof. The configurations ofG(M,x) do not depend onx, but only onM. Therefore, we consider that
these configurations are known in advance. That is, the setV of vertices ofG(M,x) is known beforehand,
even if the setE of edges changes withx. In addition, the transition functionδ is known to all the
processors.

Putn′ = |V| (n′ = poly(n)). Then, the RMBM algorithm uses(n+(n′2−n′)/2) processors, as follows:
The firstn processors, denoted bypi , 1≤ i ≤ n, contain the current inputx (in the sense that eachpi

containsxi , thei-th symbol ofx). At the beginning of each computational step,pi writesxi to busi. Since
xi ∈ {0,1}, a bus width1 is enough.

We shall refer to the remaining(n′2−n′)/2 processors aspi j , 1≤ i < j ≤ n′. Initially, a processorpi j

holds a false initial value for the elementsIi j andI ji of the incidence matrixI . Then, eachpi j considers
the (potential) edges(vi ,v j) and(v j ,vi) corresponding toIi j and I ji , respectively. If such edge(s) exist,
pi j writes True to Ii j and/orI ji as appropriate. Otherwise, it does nothing. There is no interprocessor
communication between processorspi j , 1≤ i < j ≤ n′, thus any RMBM model is able to carry on this
computation.

It remains to show that determining whether there exists an edge(vi ,v j) is computable in constant time
by one processor (pi j or p ji). Clearly, given a configurationvi , pi j can compute in constant time any
configurationvl accessible in one step fromvi (if vi = (s,z,w,y), thenvl is obtained by possibly changing
the states, incrementing, decrementing or keepingzand/ory unchanged, and changing at most one symbol
from w, everything according toδ). Recall now thatδ : (K×Σ)→ P ((K∪{h})× (Σ∪{L,R})×{L,R}),
and note that|P ((K ∪{h})× (Σ∪{L,R})×{L,R})| = O(2k) (since|Σ| = 2, and|K| = k). That is, the
number of configurations that are accessible from some given configuration is constant (O(2k)). In other
words, pi j computes (in constant time) a constant number (at mostO(2k)) of possible configurations.
Note that, in addition,pi j can holdsandw in two of its registers, and it has access to any symbolxi of the
input by simply reading busi. After this, pi j can decide whetherv j is accessible fromvi in constant time

On the Relation Between Parallel Real-Time Computations and Logarithmic Space 9

by simply checking the membership ofv j in the set of the newly computed configurations. It follows that
pi j computesIi j andI ji in constant time, and this completes the proof. 2

Some comments on the RMBM algorithm developed in the proof of Lemma3.3on page8 are in order.
One can note that the constant running time of this algorithm may be quite large (O(2k); furthermore it
depends on the number of states in the initial Turing machine). On the other hand, the subsequent use
of Lemma3.3 will emphasize the need for the RMBM algorithm to be as fast as possible. Thus, even if
theoretically sound, the dependency of the running time to the number of states is not a desirable feature.

However, given some nondeterministic Turing machineM = (K,Σ,δ,s0), one can build an equivalent
Turing machineM′ = (K′,Σ′,δ′,s0) such that, for anys2 = δ′(s1), |s2| ≤ 2. Indeed, take some states∈ K
such thatS′ = δ(s,α,β) for someα,β ∈ Σ, and|S′| > 2. Then, introduce a setKs of new, distinct states
(which do not change the tapes’ content or head positions) toK′, such that the graph corresponding toδ′
restricted toKs∪{s} is a binary tree rooted ats, with exactly all the terminal nodes inS′, and with all the
nonterminals (except the root) fromKs. Clearly,M′ is equivalent toM, in the sense that they accept the
same language and use the same amount of space.

One can now build the algorithmA from Lemma3.3based onM′ instead ofM. Then, althoughG(M,x)
may grow (still,|V| remainsO(n)), the running time ofA is now upper bounded by a very small constant,
and this constant no longer depends on the number of states ofM (or M′ for that matter).

From Lemma3.1on page6 and Lemma3.3on page8, it follows that

Lemma 3.4 NLOGSPACE⊆CRCWF-DRMBM(poly(n), poly(n),O(1)), with Collision resolution rule
and bus width1.

Proof. Given some languageL in NSPACE(logn), let M be the (NSPACE(logn)) Turing machine
acceptingL. For any inputx, the F-DRMBM algorithm that acceptsL works as follows: Using Lemma3.3
on page8, it obtains the graphG(M,x) of the configurations ofM working onx (by computing in effect the
incidence matrixI corresponding toG(M,x)). Then, it applies the algorithm from Lemma3.1on page6
in order to determine whether vertexn (halting/accepting state) is accessible from vertex1 (initial state)
in G(M,x), and accepts or rejectsx, accordingly. In addition, note that the valuesIi j andI ji computed by
(and stored at)pi j in the algorithm from Lemma3.3are in the right place as input forpi j in the algorithm
from Lemma3.1. It is immediate given the aforementioned lemmas that the resulting algorithm acceptsL
and uses no more thanpoly(n) processors andpoly(n) buses of constant width. 2

Conforming to Lemma3.4, any NLOGSPACE language can be accepted in constant time by a directed
RMBM. In fact, the relation between directed RMBMs and NLOGSPACE languages is even stronger:

Lemma 3.5 CRCWDRMBM(poly(n), poly(n),O(1))⊆NLOGSPACE, for any write conflict resolution
rule and any bus width.

Proof. Let R be some RMBM inCRCWDRMBM(poly(n), poly(n),O(1)) performing stepd of its
computation(d≤O(1)). Suppose that there exists a Turing machineMd that generates the description of
Rafter stepd usingO(logn) space. Then, by standard techniques [12], one can modifyMd (obtainingM′

d)
such thatM′

d receivesn and somei, 1≤ i ≤ n, and outputs the (O(logn) long) description for processori
instead of the whole description. We establish the existence ofMd (and thusM′

d) by induction overd, and
thus we complete the proof.

Clearly, M0 exists by the definition of a (uniform) RMBM family. We now assume the existence of
Md−1 (M′

d−1) and show howMd is constructed. For each processorpi and for busk read bypi during

10 Stefan D. Bruda and Selim G. Akl

stepd, Md performs (sequentially) the following computation:Md maintains two wordsb andρ, initially
empty. For everyp j , 1≤ j ≤ poly(n), Md determines whetherp j writes on busk. This implies the com-
putation ofGAPj,i . GAPj,i is clearly computable in nondeterministicO(logn) space (it is a simplification
of the Graph Accessibility Problem, which is NLOGSPACE-complete [18]; the local configurations of
fused and segmented busses at each processor are obtained by calls toM′

d−1). If p j writes on busk, then
Md usesM′

d−1 to determine the valuev written byp j , and updatesb andρ as follows: Ifb is empty, then it
is set tov (p j is currently the only processor that writes something to busk), andρ is set to j. Otherwise,

1. If R uses the Collision resolution rule, the collision signal is immediately placed inb. The value of
ρ is immaterial.

2. When the Common rule is used,Md comparesb andv. If they are different, the input is rejected
immediately. The value ofρ is again immaterial.

3. If the conflict resolution rule is Priority,ρ and j are compared; if the latter denotes a processor
with a larger priority, thenb is set tov andρ is set to j. Otherwise, neitherb nor ρ are modified.
The Arbitrary rule is handled similarly, except that the decision whether to modifyb andρ is made
arbitrarily instead of being based on the values ofj andρ.

4. If R uses the Common resolution rule with◦ as combining operation,b is set to the result ofb◦v.
The operation can be performed inO(logn) space, since the length of bothb andv is O(logn), and
◦ is computable in linear space. As well, the operation◦ is associative. It follows that, once all the
processorsp j have been considered, the content ofb is the correct combination of all the values
written on busk.

Once the content of busk has been determined, the configuration ofpi is updated accordingly,b andρ
are reset to the empty word, and the same computation is performed for the next bus read bypi or for the
next processor.

The space required byMd is the space for the configuration ofpi itself, plus the space for the config-
uration of one other processor, plus the space requiredb, v, andρ. The latter three values cannot be of
size larger thanO(logn) (since the word size of any processor isO(logn) and the number of processors
is poly(n)), and the configurations clearly takeO(logn) space. Thus, the whole computation ofMd takes
O(logn) space, and the induction is complete. 2

Lemma3.4on page9 and Lemma3.5on page9 imply the following results:

Theorem 3.6 CRCWDRMBM(poly(n), poly(n),O(1)) = NLOGSPACE, for any write conflict resolu-
tion rule and any bus width.

For any write conflict resolution rule and any bus width,CRCWDRMBM(poly(n), poly(n),O(1)) =
CRCWF-DRMBM(poly(n), poly(n),O(1)) with Collision resolution rule and bus width1.

Corollary 3.7 DRMBM(poly(n), poly(n),O(1)) = DRN(poly(n),O(1)).

Proof. Immediate from Theorem3.6on page10, sinceNLOGSPACE= DRN(poly(n),O(1)) [4]. 2

The following is a generalization of Theorem3.6on page10:

Corollary 3.8 For any problem P solvable in constant time by some (directed or nondi-
rected) RMBM family using poly(n) processors and poly(n) buses, it holds that P ∈
CRCWF-DRMBM(poly(n), poly(n),O(1)) with Collision resolution rule and bus width1.

On the Relation Between Parallel Real-Time Computations and Logarithmic Space 11

Proof. From Theorem3.6on page10and Observation1 on page6. 2

We note that the power of (nondirected) RMBMs has been investigated in [21], where it is shown
that nondirected RMBMs are exactly as powerful as nondirected RNs, and that the Collision, Common,
Arbitrary, and Priority rules are equivalent in power. In addition, RNs (and thus RMBMs) solve in constant
time exactly all the problems in LOGSPACE [4]. By Theorem3.6on page10and Corollary3.7on page10
we extend these results to the directed variants of RMBMs and RNs running in constant time. As expected,
DRMBMs, DRNs, and logarithmic space bounded nondeterministic Turing machines are found to have
the same computational power. Corollary3.8 on page10 shows that, again, the Collision, Common,
Arbitrary, and Priority rules are equivalent to each other. In addition though we show that a resolution
rule apparently much more powerful than the others, namely Combining, adds no computational power
either. Then, for constant time computations on DRMBM, bus width does not matter; any problem can
be solved using buses of unitary width. Finally, as is the case of (undirected) RMBMs, it follows from
Corollary3.8on page10 that segmenting buses does not add computational power over fusing buses.

4 Small space computations are real-time
We have now all the necessary ingredients to state the first result linking real time with logarithmic space
computations. First though, we have to make an additional assumption: We henceforth consider that
the deadlines imposed on real-time computations are reasonably large compared to the processor clock
frequency. We believe that this is a reasonable assumption. Indeed, nowadays processors operate at
frequencies around (and sometimes exceeding) 1GHz; still, we are not aware of any real-time application
that requires deadlines measured in nanoseconds.

Note now that the potential existence of adeadlinecan be modeled as a well-behaved timedω-word
[5] by Wd = (σ,τ), where, for some special, designated symbolsw andd,

(i) σi = w andτi = i for i > 0; or

(ii) σ1 ∈ N∩ [max,0), τ1 = 0; for i > 0, if τi < td, thenτi = i andσi = w. Let i0 be the index such that
τi = td. Then, for alli ≥ i0, τi = i0 + b(i− i0)/2c, and

σi =
{

d if i− i0 is even
0 otherwise; or

(1)

(iii) Same as case (ii), except that equation (1) becomes

σi =
{

d if i− i0 is even
u(τi) otherwise.

(2)

The above description ofWd has the following semantics: The special symbolw is present whenever
the current time does not exceed the deadline; if the deadline passed, then the symbols that arrive as input
are alld. If the computation is completed at a moment in which the input symbol isw, then it has met the
associated deadline; otherwise, the deadline has passed.

12 Stefan D. Bruda and Selim G. Akl

Case (i) models a computation without deadlines. Such a case is provided for completeness, since,
even in a real-time environment, it is possible that some tasks have no associated deadline. Provided that
it terminates at all, any such a computation meets its deadline (that is, terminates at some time when the
arriving input isw). Case (ii) represents a computation with a firm deadline at timetd. A computation
completing after the deadline is useless, and this is expressed by the presence of the zeroes (meaning zero
utility) arriving together with the symbolsd that signal the fact that the deadline has passed. Finally, case
(iii) models a computation featuring a soft deadline at timetd with the utility functionu : N∩ [td,ω)→
N∩ [0,max]. At any momentt > td, the signald comes together with the usefulness of the associated
computation (between 0, meaning useless, and some maximum valuemax), provided that the computation
completes at timet.

With this definition ofWd, and for any problemP∈NSPACE(logn), letPτ = {(σσd,τ)| σ is some input
for P, σd = detime(Wd) for some timed wordWd modeling a deadline, andτ is some well-behaved time
sequence}. In other words,Pτ represents the problemP in the (potential) presence of deadlines. Then, the
relation between NLOGSPACE and real-time computations can be informally stated as follows: Suppose
one has a (possibly infinite) set of inputs for a bunch of problems in NLOGSPACE. We impose some
(any) deadline for each of these inputs, and we feed them at various time moments to some machine. If
that machine happens to be a CRCW F-RMBM, then it is able to handle the input successfully. Formally,
given Theorem3.6 on page10 (and noting that the size complexity of an RMBM withpoly(n) proces-
sors andpoly(n) buses ispoly(n)), we have the following relation linking NLOGSPACE with real-time
computations.

Theorem 4.1
S(

∏P∈NSPACE(logn) Pτ
)⊆ rt-PROCCRCWF-DRMBM(poly(n)), wheren is the maximum input

size for problemsP.

Proof. All the processing implied by Theorem3.6on page10 (namely, the algorithms from Lemmas3.1
on page6 and3.3on page8) takes very little (and constant) time, and thus accommodates any reasonable
(in the sense of the above assumption) time sequenceτ associated with the computation. 2

In some sense, one may argue that the inclusion relation from Theorem4.1 is in fact an equality,
conforming to Theorem3.6 on page10. Indeed, NLOGSPACE computations arethe onlycomputations
in the classical sense that can be performed in constant time by DRMBMs, no matter how many processors
and buses are used; thus, given any deadline (in effect imposing a constant upper bound on the running
time), it follows that no computation outside NLOGSPACE can be successfully carried out. However,
this inclusion cannot be improved upon, since there might exist real-time computations (for example, not
exhibiting explicit deadlines and thus not necessarily having constant time constraints) that are not in
NLOGSPACE but can still be performed within the given resource bounds (that is, a polynomial number
of processors and buses).

Indeed, one candidate for such computations can be the family of timedω-languagesPURSUITk, k≥ 1,
presented in [8] and summarized in Section2.1on page3. Those languages, modeling thek-dimensional
version of thepursuit and evasion on a ringproblem, do not feature explicit deadlines. The real-time
qualifier is instead given by the “movements of the pursuee,” that is, by the real-time input arrival. We
shall try to see what is the classical computation corresponding to this problem.

In Theorem4.1, we addeddeadlines (that is, real-time constraints) to problems. We face now the
reversed problem, namely how can oneeliminatethe real-time qualifier from the specification of some
problem. Analyzing the form of the wordWd modeling deadlines offers the clue. Indeed, one can notice
that, from some time on, the symbols fromWd no longer represent the input. Instead, they consists of

On the Relation Between Parallel Real-Time Computations and Logarithmic Space 13

symbolsw andd that model the timing constraints imposed on the computation. Similarly, in a real-time
problem for which the input is virtually endless, a prefix of that input represents the same problem, except
that in the case of such a prefix, the input “stops coming” at some time. This is the most general restriction
to a classical environment one can model, since the input is finite in such an environment:

Definition 4.1 Consider some well-behaved timed omega-languageL. For some(σ,τ) ∈ L, i > 0 is a
progression pointiff § τi 6= τi+1.

Let Ls = {σ′|there exists some finite progression pointn such that(σ,τ) ∈ L andσ′ = σ1...n} (each
word in Ls is constructed by taking a word fromL, restricting its length to some finiten, and discarding
the time sequence). If, for some complexity classC, Ls∈C, then we say thatL ∈C/rt (L is thereal-time
counterpartof Ls; alternatively,Ls solves the same problem asL, but without real-time constraints, and
thusLs is thestatic versionof L).

Note in passing that Definition4.1 on page13 not only allows us to study the pursuit problem in the
context of Theorem4.1on page12, but it offers a more concise formulation of Theorem4.1 itself:

Theorem 4.2 NSPACE/rt (logn)⊆ rt-PROCCRCWF-DRMBM(poly(n)).

It is immediate that the two formulations are equivalent, while the one expressed by Theorem4.2 is
easier to understand.

We now show that pursuing something is easy outside the real-time paradigm: Recall from Section2.1
on page3 that PURSUITk denotes the “k-dimensional version” of the pursuit and evasion problem [8].
Then,

Theorem 4.3 For anyk > 0, PURSUITk ∈ SPACE/rt (logn).

Proof. LetC be a class such thatPURSUITk ∈C/rt . We shall show thatC= LOGSPACEand we are done.
According to Definition4.1 on page13, a wordws in the static version ofPURSUITk has the following
structure: Denote|ws| by n; then,ws contains

• An initial word w0 ∈ {a,b}r for somer ≤ n; this is the initial configuration, which the pursuee
modifies as time passes.

• Some numberm of moves by the pursuee (denoted by some wordswi ∈ Lci, 1≤ i ≤ m); such a
move in effect changes a maximum ofp symbols fromw0, p < r.

It is clear thatr, p,m≤ n, sincen is the length of the whole input. Consider now a deterministic Turing
machineM accepting the static version ofPURSUITk. In order to determine the number ofa’s andb’s in
w0, M simply keeps two countersCa andCb, one fora’s and the other forb’s, respectively. As the input is
scanned, the two counters are incremented accordingly.

Once the end ofw0 is reached,M performs the following step for eachwi , 1≤ i ≤m: M identifies that
portion ofw0 which is changed bywi . Then,M scans this portion, decrementingCa or Cb for eacha or b
it encounters during this procedure. Finally,M identifies that portion ofwi that changesw0 and scans it,
incrementingCa and/orCb accordingly. It is clear that, at the end of stepmof such a computation,Ca and
Cb contain precisely the number ofa’s andb’s, respectively, that are present inw0 as it is changed by all
§ One does not want to split a bunch of symbols arriving at the same time, since such a bunch often represents a nondivisible piece

of the input. . .

14 Stefan D. Bruda and Selim G. Akl

wi , 1≤ i ≤m. Therefore, when the end of the input is reached,M simply comparesCa andCb and accepts
the input iff they are identical.

Clearly,Ca andCb takelogr space each (since there are at mostr a’s and at mostr b’s in w0). The
identification procedure mentioned above uses two pairs of counters, each pair delimiting the portions of
interest ofw0 and the currentwi , respectively. Each of these four counters holds an index in the current
input, hence it can be stored inlogn space. Finally, setting these counters involves simple arithmetic
operations on indices (that is, numbers bounded above byn), hence they are computable in LOGSPACE.
Therefore, the space required by the whole computation isO(logn), as desired. 2

Theorem4.3on page13 is an interesting result. Indeed, even ifPURSUITk is a problem that requires a
lot of computational effort (in particular, it cannot be solved at all if less than2k processors are available
[8]), it becomes a very simple problem (not only in NLOGSPACE, but even in LOGSPACE) once the
real-time constraints are eliminated. Thus, Theorem4.3 justifies the following conjecture:

Claim 1 NSPACE/rt (logn) = rt-PROCCRCWF-DRMBM(poly(n)).

5 Independence systems and real-time computation
We focus our attention now to optimization problems. In this context, we identify the class of such
problems that can be computed in real time if a parallel machine is used. Based on this identification, we
also extend previous results [2].

5.1 Independence systems and matroids

If S is a set referred to as theset of feasible solutions, over which a mappingc is defined (c : S→R), then
a problem of the form

{maxc(s)|s∈ S} or (3)

{minc(s)|s∈ S} (4)

is anoptimization problemover S. Form (3) defines amaximization problem, while form (4) is aminimiza-
tion problem; c is referred to as theobjective function. In the following, we shall refer to maximization
problems whose set of feasible solutions contains only elements of{0,1}n. In this case,S can be con-
sidered a subset ofP (E), with E = {1,2, . . . ,n}. Therefore, problems of the form (3) can be restated
as

max

{
∑
i∈R

ci

∣∣∣∣∣R⊆ E andR∈ S

}
. (5)

Notice that in this casec(s) is implicitly defined as∑i∈sci for any sets⊆E. We consider without loss of
generality thatci ≥ 0, 1≤ i ≤ n. The set of optimal solutions to the maximization problem (5) is thus not
changed if one replacesSby itshereditaryclosureS∗ defined asS∗ = S∪{s|s⊆ s′,s′ ∈S for somes′ ⊆E}.
(E,S∗) is anindependence systemas per Definition5.1on page15.

On the Relation Between Parallel Real-Time Computations and Logarithmic Space 15

Definition 5.1 [13] Let E be a finite set andS⊆ P (E), such thatShas themonotonicity property: s1 ⊆
s2 ∈ S⇒ s1 ∈ S. Then,(E,S) is anindependence system, and members ofSare said to beindependent.

Let (E,S) be an independence system. For eachF ⊆ E, thelower ranklr (F) (upper rankur(F)) of F
(with respect toS) is defined as the cardinality of the smallest (largest) maximal independent subsets of
F : lr (F) = min{|s||s∈ S;s⊆ F ands∪{e} ∈ S for all e∈ F \{s}}; ur(F) = max{|s||s∈ S;s⊆ F}.

A greedy algorithmfor problem (5) on general independence systems is given in [13]:

algorithm GREEDYMAX (E,S;sg)
1. let(e1,e2, . . . ,en) be an ordering ofE with c(ei)≥ c(ei+1)
2. sg ← /0
3. for i ← 1. . .n do
3.1. if sg∪{ei} ∈ S then sg ← sg∪{ei}

Proposition 5.1 [13] Let (E,S) be an arbitrary independence system,sg the solution returned by algo-
rithm GREEDYMAX , ands∗ the optimal solution of (5). Then, for any weight functionc : E→ R+,

min
F⊆E

lrF
urF

≤ c(sg)
c(s∗)

≤ 1.

It should be noted that the algorithmGREEDYMAX contains one statement which depends on the actual
independence system being considered, namely the boolean expression on line 3.1. Indeed, for a general
independence system one does not know how the check “sg∪{ei} ∈ S” is done. Thus, in order to analyze
the complexity of such an algorithm, one can assume the existence of anoracle that can answer whether
some sets is in Sor not.

Definition 5.2 [13] An independence system(E,S) is called amatroid if, for any F ⊆ E, it holds that
lr (F) = ur(F).

From Proposition5.1on page15and Definition5.2 it follows that:

Corollary 5.2 Algorithm GREEDYMAX on a matroid(E,S) yields the optimal solution for (5) for all
objective functionsc : E→ R+.

5.2 A real-time perspective
To put Definition5.2 on page15 in another way [10, 12], matroids are independence systems with the
additional property that all the maximal independent subsets have the same size (therefore, sinceci ≥ 0,
1≤ i ≤ n, the greedy algorithm obtains the optimal solution). In light of this formulation, the parallel
implementation ofGREEDYMAX is immediate [9, 12]:

algorithm PARALLEL GREEDYMAX (E,S;sg)
1. sortE, obtaining(e1,e2, . . . ,en) s.t. c(ei)≥ c(ei+1)
2. sg ← /0; r0 ← 0
3. for i ← 1. . .n do in parallel
3.1. r i ← ur{e1,e2, . . . ,ei}
3.2. if r i−1 < r i then sg ← sg∪{ei}

16 Stefan D. Bruda and Selim G. Akl

Algorithm PARALLEL GREEDYMAX uses arank oracle: The functionur{e1,e2, . . . ,ei} introduced by
Definition5.1on page15and used at step 3.2 gives the size of some (hence, whenever(E,S) is a matroid,
any) maximal independent set over{e1,e2, . . . ,ei}.
Lemma 5.3 Supposeur{e1,e2, . . . ,ei} ∈ DRMBM(poly(i), poly(i), t(i)) (i.e., ur{e1,e2, . . . ,ei} can be
computed by a DRMBM in timet(i) using a polynomially bounded number of processors and busses).
Then,PARALLEL GREEDYMAX ∈ DRMBM(poly(n), poly(n),O(t(n))).

In particular, if t(i) = O(1), thenPARALLEL GREEDYMAX ∈ DRMBM(poly(n), poly(n),O(1)).

Proof. The initial sorting (step 1) can be achieved in constant time on a DRMBM with polynomially
bounded resources [1]. It follows that step 1 is computable in constant time on a DRMBM usingpoly(n)
processors andpoly(n) busses by Corollary3.8 on page10. Steps 2 and 3.2 are trivially computable in
constant time with polynomially bounded resources.

However, each on the calls tour in step 3.1 can be performed int(n) time by usingn copies of the
RMBM computingur, each of them working independently from each other. Finally, each of then
RMBMs communicate with one other processor. Thesen new processors implement step 3.2 and report
the result. Since both the argument ofur and the result returned by this function are polynomial in size,
poly(n) busses suffice for such a communication. All the resources are polynomially bounded, and thus
PARALLEL GREEDYMAX ∈ DRMBM(poly(n), poly(n),O(t(n))), as desired.

If t(i) = O(1), PARALLEL GREEDYMAX ∈ DRMBM(poly(n), poly(n),O(1)) is immediate by Corol-
lary 3.8on page10. 2

Lemma 5.4 Let (E,S) be some independence system,E = {e1,e2, . . . ,en}, and letA be an algorithm
solving a maximization problem of the form (5) over(E,S). Denote bytA(n) (tur(n)) the running time ofA
(the time required to computeur(E)) on a DRMBM using a polynomially bounded number of processors
and busses. Then,tur(n) is a lower bound fortA(n).

Proof. Let s∗ = {s1,s2, . . . ,sk} be the solution computed byA. Sinces∗ is an optimal solution, it follows
thatur(E) = k. However, givens∗, k can be computed in constant time on a DRMBM: Assume without
loss of generality that the elements ofs∗ are stored in the registers ofn processorspi , 1≤ i ≤ n, such
that exactlyk processors hold one element froms∗ each. Then, each processorspi , 1≤ i ≤ n, sets a
designated registervi such thatvi = 1 if pi holds a value froms∗ andvi = 0 otherwise. Then, a prefix
sum overvi , 1≤ i ≤ n, computesk. It follows that|s∗| (and thusur(E)) can be computed in constant time
givens∗, since prefix sum takes constant time on RMBM [20]. Therefore,tur(n) = O(tA(n)) (alternatively,
tA(n) = Ω(tur(n))), as desired. 2

Corollary 5.5 Let M be the class of maximization problems that can be described as a matroid and for
whichur ∈DRMBM(poly(i), poly(i),O(1)). LetP be some maximization problem of form (5) over some
independence system(E,S). Then,

• P∈ DRMBM(poly(n), poly(n),O(1)),

• P∈ NLOGSPACE, and

• P/rt ∈ rt-PROCCRCWF-DRMBM(poly(n)),

iff P∈M .

On the Relation Between Parallel Real-Time Computations and Logarithmic Space 17

Proof. The “if” part follows from Lemma5.3 on page16, and the “only if” part is established by
Lemma5.4on page16. 2

By Corollary 5.5 on page16 we have precisely identified—among those optimization problems that
can be expressed as independence systems—the class of such problems solvable in parallel real time. We
believe that this result may be of interest for at least two reasons:

1. On one hand, consider those independence systems—or problems that can be formulated as such—
not in M (with M as defined in Corollary5.5 on page16). For these problems, finding an exact
solution in real time is asymptotically impossible, even if a parallel machine is available (in the
sense that the running time of any (poly(n)-processor) algorithm solving such a problem exceeds
for large enough input size any (implicit or explicit) constant deadline). In such a case, one should
probably look for either further restricting the problem (in order to bring it withinM), or find a
reasonable approximation algorithm that is in NLOGSPACE.

2. On the other hand, Corollary5.5 on page16 easily extends previous results, as we shall show in
what follows.

5.3 Beyond speedup, revised

The problem of computing theminimum-weight spanning tree(MST) of a connected, undirected, and
weighted graph in real time is investigated in [2], where it is shown that the best approximate solution to
the MST problem returned by a sequential algorithm can be arbitrarily worse than the solution obtained
by a parallel algorithm (which actually returns the optimal solution). We shall not, however restrict
ourselves to connected graphs, since the extension to unconnected ones (when the tree becomes a forest)
is immediate.

One can notice that MST can be trivially transformed from a minimization problem into a maximization
one: just negate all the edge weights, and then add to every weight the absolute value of the maximum
edge weight. Furthermore, it is immediate that the MST problem can be expressed as a matroid [10].
Thus, we can both tighten and extend the result from [2] by using Corollary5.5on page16.

First, the result in [2] is not tight: Time up tonε, for some0< ε < 1, is allowed for each (parallel or se-
quential) real-time computation leading to the result. This running time, however, asymptotically exceeds
any (however large) constant deadline imposed to the computation by some real-time environment. Still,
the same result holds for true real-time computations as well.

Indeed, we show in what follows that, for any real-time environment one can encounter, a parallel al-
gorithm can solve MST arbitrarily better than a sequential one. That is, while the parallel implementation
is able to return an optimal solution, even an optimal sequential algorithm can only report an approximate
result in the limited time which is available due to the real-time constraints. This result, an immediate
consequence of Corollary5.5on page16, is given in Lemma5.6on page17below.

Lemma 5.6 Let MST denote the problem of computing the minimum-weight spanning forest on undirected
and weighted graphs. Then,MST∈ DRMBM(poly(n), poly(n),O(1)) (and thusMST∈ NLOGSPACE,
MST/rt ∈ rt-PROCCRCWF-DRMBM(poly(n))), and the best approximate solution toMST/rt returned by a
sequential algorithm is arbitrarily worse than the solution obtained by a parallel RMBM algorithm with
polynomially bounded resources.

18 Stefan D. Bruda and Selim G. Akl

Proof. Functionur for MST can be computed in logarithmic space (and thus in real-time on RMBM):
ur{e1,e2, . . . ,ei} is simply i minus the number of connected components in the graph induced by
{e1,e2, . . . ,ei}, and can thus be computed by performing a reflexive and transitive closure (which is
an NLOGSPACE-complete problem [18]). By Corollary 5.5 on page16, it follows that MST can be
computedexactlyin real time on an RMBM, no matter how tight the deadlines are.

However, an optimal sequential algorithm solving the same problem has a running time that cannot
accommodate even the most generous deadline, and thus a sequential algorithm to some real time variant
of MST can only guesssomesolution, and the guess can be arbitrarily bad, as detailed in [2]. 2

In fact, the second part of the proof of Lemma5.6 on page17 also proves that this type of behav-
ior (namely a parallel algorithm being able to compute an arbitrarily better solution than the optimal
sequential one) is not an exclusive feature of the MST problem, but it applies to many more real-time
computations instead. Therefore:

Corollary 5.7 With M as in Corollary5.5 on page16, the best approximate solution toP/rt returned
by a sequential algorithm, for anyP∈ M , is arbitrarily worse than the solution obtained by a parallel
RMBM algorithm with polynomially bounded resources.

In other words, the results from [2] do hold even for the tightest real time environment. In addition,
these results are not applicable only to the MST, but to a whole class of problems instead, namelyM
from Corollary5.5 on page16. That is, there exists not only a problem, but a whole family of them for
which a parallel implementation can do something other than speeding up computation, namely improve
the offered solution.

6 Real-time approximation schemes
As a consequence of Claim1 on page14, the problem of finding approximate solutions computable in
real time (in those cases when the exact solution cannot be computed within the given time restrictions)
becomes a worthy pursuit. Such an approach is common in classical complexity theory. Indeed, in the
sequential case, NP-hard problems are for all practical purpose (unless P equals NP) not computable but
for the smallest instances, and thus deterministic polynomial time approximations are usually sought [11].
Similarly, this time in the context of parallel computations, efficient parallel approximations to P-complete
(that is, inherently sequential unless NC equals P) problems were also investigated [12].

The identification from Claim1 on page14of NLOGSPACE as the class containing exactly all the prob-
lems solvable in real time naturally extends such a search for approximation algorithms: Once a problem
is shown as being likely not solvable in real time (that is, not in NLOGSPACE), then an approximate
solutions may become attractive. We now offer a incipient discussion on this matter.

First, we define the notion of “good” approximation algorithms by adapting the definitions already used
[11, 12] to our framework:

Definition 6.1 Consider some algorithmA working on instancei of a minimization (maximization)
problem, and suppose thatA delivers a candidate solution with valueA(i). With Opt(i) denoting
the value of the optimal solution for inputi, the performance ratioof A on i is RA(i) = A(i)/Opt(i)
(RA(i) = Opt(i)/A(i)). The absolute performance ratioof A is defined asRA = inf {r ≥ 1|RA(i) ≤
r for all instancesi}.

On the Relation Between Parallel Real-Time Computations and Logarithmic Space 19

An algorithmA with inputsε > 0 andi ∈Π is anapproximation schemefor Π iff A delivers a candidate
solution with performance ratioRA(i)≤ 1+ε for all i ∈Π. In addition, ifA∈ rt-PROC(poly(|i|)), thenA
is areal-time approximation schemefor Π.

The body of knowledge regarding NC approximations [12] gives some negative results: Once it
is proved that some problem does not admit an NC approximation algorithm, it follows that no
NLOGSPACE (and thus real-time) approximation algorithm exists either, sinceNLOGSPACE⊆ NC.

Theorem 6.1 If P 6= NC, then there exists no real-time approximation scheme for the following problems:

• Lexicografically first maximal independent set [12].

• Unit resolution (the problem whether the empty clause can be deduced from a given propositional
formula in conjunctive normal form) [17].

• Generability (given a finite setW, a binary relation• onW, a subsetV ⊆W, andw∈W, determine
whetherw is in the smallest subset ofW that containsV and is closed under•) [17].

• Path systems (given a path systemP = (X,R,S,T), S,T ⊆ X, R⊆ X×X×X, determine whether
there exists an admissible vertex inS) [17].

• Circuit value [17].

• High degree subgraph (given a graph G and an integer k, does G contain an induced subgraph with
minimum degree at least k?) fork≥ 3 [17].

• Linear programming, in both the following cases: the approximation solution should be a vector
close to the optimal one, and the approximation solution seeks the objective function to have a value
close to optimal [16].

Proof. It has been proven (reference to proofs are given within the theorem) that any approximation
scheme for these problems is P-complete. SinceP 6= NC andNSPACE⊆NC, Claim1 on page14implies
that the above problems do not admit any real-time approximation scheme. 2

6.1 Bin packing
We focus now our attention to thebin packingproblem. True, there is apparently little hope to find real-
time approximation schemes for this problem, since bin packing is NP-complete. However, bin packing
is closely related to certain scheduling problems (since the item to be packed can be viewed as tasks to be
scheduled), and it is thus conceivable that real-time approximation algorithms can be of use for scheduling
tasks in real time on a parallel machine (the utility of such a processing being evident). On the other hand,
this time with respect to the feasibility of tackling bin packing in a real-time environment, we note that
good NC approximation schemes for this problem already exist [3].

The input for the bin packing problem consists inn items, each of size within interval(0,1). Then
items should be packed in a minimal number of bins of unit capacity.

One of the successful approaches in developing sequential (that is, inP) bin packing approximation
algorithms is the use of simple heuristics. In this respect, one should mention thefirst fit decreasing
(FFD) heuristic, which considers the items in nondecreasing order of their size, and places each item

20 Stefan D. Bruda and Selim G. Akl

into the first available (that is, with enough free space) bin. Even if simple, the length of the packing
returned by FFD, of at most11/9×Opt+3 (whereOpt is the length of the optimal solution), is a good
approximation, qualifying FFD as an approximation scheme. Still, it is not only intuitive that FFD is
inherently sequential (that is, P-complete):

Proposition 6.2 [3] Given a list of items, each of size between 0 and 1, in nonincreasing order, and two
indicesi andb, it is P-complete to decide whether the FFD heuristic will pack theith item into thebth
bin. This is true even if the item sizes are represented in unary.

Even if FFD is inherently sequential, an NC algorithm that achieves the same performance as FFD
(although by using different techniques) is given in [3]. This algorithm works in two stages, as follows:

1. The first stage packs all the items that have a size of at least1/6. Such a stage starts bysorting the
list of items in nonincreasing order. Then, a constant number of passes are performed, each pass
involving two algorithms: (a) mergetwo sorted lists ofn elements each into a sorted list, and (b) in
a string of lengthn of opening and closing parentheses, find the matching pairs.

2. In the second stage, the remaining items are packed. This stage involves a (relatively large) number
of parallel prefix computations.

Theorem 6.3 Bin packing admits a real-time approximation schemeA such thatA(i)≤ 11/9×Opt(i)+3
for any instancei.

Proof. We follow the algorithm from [3], showing how this algorithm can be implemented in real time.
According to Theorem3.6on page10, we have a choice of showing that this algorithm is in NLOGSPACE
or in DRMBM(poly(n), poly(n),O(1)). We chose the latter variant.

First, we note that sorting can be done in constant time on an (nondirected or directed) CREW RMBM
usingpoly(n) processors andpoly(n) buses [20]. Then, it is immediate that merging two sequences into
a sorted sequence is also computable in constant time on RMBM. Indeed, the quick and dirty method of
sorting (using the algorithm mentioned above) the two lists concatenated together will do the trick.

The problem of matching parentheses can be implemented in two steps as follows: First, the unmatched
parentheses can be eliminated by a parallel prefix computation. Then, there exists a constant time algo-
rithm on DRN usingpoly(n) processors for matching the remaining sequence of parentheses [1]. How-
ever, this implies the existence of a similar algorithm on RMBM with polynomially bounded number of
processors and buses, according to Corollary3.7on page10.

Thus, the only algorithm that is still needed is the parallel prefix computation, which is in
CREWRMBM(poly(n), poly(n),O(1)) according to [20] (in fact, such an algorithm is the basis for the
aforementioned sorting algorithm).

In conclusion, all the algorithms used by the two stages on the NC approximation scheme from [3]
are inCREWRMBM(poly(n), poly(n),O(1)). Since these algorithms are applied a constant number of
times, the whole processing is inCREWRMBM(poly(n), poly(n),O(1)) and thus in rt-PROC(poly(n)).
This completes the proof. 2

In passing, one should note that the algorithm from the proof of Theorem6.3 apparently requires a
large (albeit constant) amount of time to complete. However, such a construction is enough to prove
that bin packing admits a real-time approximation scheme. Indeed, the existence of an algorithm in
CREWRMBM(poly(n), poly(n),O(1)) implies the existence of another algorithm, solving the same

On the Relation Between Parallel Real-Time Computations and Logarithmic Space 21

problem, but this time inCRCWF-DRMBM(poly(n), poly(n),O(1)), and whose running time is very
small, as shown in Corollary3.8 on page10. True, we do not offer a constructive proof for this corol-
lary, and thus theCRCWF-DRMBM(poly(n), poly(n),O(1)) algorithm cannot be effectively constructed
using only the results from this paper. Still, if needed, we believe that, although not a trivial matter,
developing such a constructive transformation is feasible.

7 Conclusions
Recently, we addressed a number of questions associated with real-time computations featuring implicit
deadlines [8]. In this paper, we focused our attention on computations with explicit deadlines. Specifically,
we considered computations that can be performed within specific, fixed deadlines for any input size.
Given any language that can be accepted by a machine using logarithmic work space, we showed in
Theorem4.1 on page12 that such a language can be accepted by a parallel machine with polynomially
bounded resources, in the presence ofany(that is, however tight) real-time constraints.

Theorem4.3 on page13 is another interesting result: Even a timed language likePURSUITk, whose
acceptance requires considerable computational effort, can be accepted in logarithmic space once the
real-time constraints are dropped. This allows us to state Claim1 on page14, which offers a nice coun-
terpart of the parallel computation thesis [12, 15]. In this thesis, NC is conjectured to contain exactly
all the computations that admit efficient (poly(n) processors and polylogarithmic running time) parallel
implementations. By contrast, we conjecture that NLOGSPACE contains exactly all the computations
that admit efficient (poly(n) processors) real-time parallel implementations.

As well, we considered the class of maximization problems over independence systems, showing that a
problem pertaining to this class is solvable in real time iff it is a matroid and the size of an optimal solution
is computable in real-time. Given this result, we showed that, indeed, there exists not only a problem, but
a whole family of them for which a parallel implementation can do something other than speeding up
computation, namely unboundedly improve the offered solution.

In light of Claim 1 on page14, the following research direction becomes useful: Which are those
problems that, although possibly not solvable in the real-time environment imposed by some real-time
application, admit “good” approximate solutions provably achievable in any real-time environment? Do
they form a well-defined complexity class? If so, which are the problems pertaining to such a class?
This paper offers a solid basis for the pursuit of this direction, since we identify here a class of candi-
dates for approximating algorithms. In addition, this class of candidates is either NLOGSPACE or F-
DRMBM(poly(n),poly(n),O(1)), whichever is more natural for the given problem, since they are in fact
identical as shown by Theorem3.6 on page10. As a starter for such a direction, along with identifying
some problems not admitting real-time computable approximate solutions, we showed that real-time ap-
proximation schemes do exists. Interestingly enough, we found with relative ease such an approximation
algorithm for quite a hard (in fact, NP-complete) problem, namely bin packing. This is a nice argument
in favor of the relations that we discovered between NLOGSPACE, RMBM, and real-time computations,
and a good motivation for the use of timedω-languages in the study of (approximate or not) real-time
computations.

We also determined the computational power of DRMBM running in constant time. We showed that
DRMBM and DRN with constant running time have the same computational power. In addition, showed
that no conflict resolution rule is more powerful than Collision. According to this result, the discussion re-
garding the practical feasibility of rules like Priority or Combining on spatially distributed resources such

22 Stefan D. Bruda and Selim G. Akl

as a buses is no longer of interest. Indeed, such rules are not only of questionable feasibility, but simply
not necessary as well. Finally, we identified a gap in the complexity hierarchy of RMBM computations as
well: As far as constant time computations are concerned, there is no need for a large bus width; instead,
buses composed of single wires are sufficient.

One interesting open problem naturally arises from the characterization described in the above para-
graph: does a form of Corollary3.8on page10 hold for other models of parallel computations? On one
hand, we showed in Corollary3.8 that unrealistic rules like Priority and Combining do not add compu-
tational power. However, this result is obtained for the restricted class of DRMBMs running in constant
time. Thus, we wonder whether such a result holds for (a) DRMBMs in general, not only those with
constant running time, and (b) for other models of parallel computation (RN, PRAM, etc.). On the other
hand, we wonder whether the bus width can be bounded for DRNs running in constant time as it has been
bounded in the case of DRMBMs. In other words, can the bus width in a DRN be bounded by a constant?

References
[1] S. G. AKL , Parallel Computation: Models and Methods, Prentice-Hall, Upper Saddle River, NJ,

1997.

[2] S. G. AKL AND S. D. BRUDA, Parallel real-time optimization: Beyond speedup, Parallel Processing
Letters, 9 (1999), pp. 499–509. For a preliminary version see http://www.cs.queensu.ca/home/akl/-
techreports/beyond.ps.

[3] R. J. ANDERSON, E. W. MAYR , AND M. K. WARMUTH, Parallel approximation algorithms for
bin packing, Information and Computation, 82 (1989), pp. 262–277.

[4] Y. BEN-ASHER, K.-J. LANGE, D. PELEG, AND A. SCHUSTER, The complexity of reconfiguring
network models, Information and Computation, 121 (1995), pp. 41–58.

[5] S. D. BRUDA AND S. G. AKL , Real-time computation: A formal definition and its applications, to
appear in International Journal of Computers and Applications.

[6] , On the necessity of formal models for real-time parallel computations, Parallel Processing
Letters, 11 (2001), pp. 353 – 361.

[7] , Parallel real-time complexity: A strong infinite hierarchy, in Proceedings of VIII International
Colloquium on Structural Information and Communication Complexity, Vall de Núria, Spain, June
2001, Carleton Scientific, pp. 45–59. For an extended version see http://www.cs.queensu.ca/home/-
bruda/www/pursuit/.

[8] , Pursuit and evasion on a ring: An infinite hierarchy for parallel real-time systems, Theory of
Computing Systems, 34 (2001), pp. 565–576.

[9] S. A. COOK, A taxonomy of problems with fast parallel algorithms, Information and Control, 64
(1985), pp. 2–22.

[10] T. H. CORMEN, C. E. LEISERSON, AND C. STEIN, Introduction to Algorithms, MIT press, Cam-
bridge, MA, 2 ed., 2001.

On the Relation Between Parallel Real-Time Computations and Logarithmic Space 23

[11] M. R. GAREY AND D. S. JOHNSON, Computers and Intractability: A Guide to the Theory of NP-
Completeness, W. H. Freeman and Company, 1979.

[12] R. GREENLAW, H. J. HOOVER, AND W. L. RUZO, Limits to Parallel Computation: P-
Completeness Theory, Oxford University Press, New York, NY, 1995.

[13] R. KANNAN AND B. KORTE, Approximative combinatorial algorithms, in Mathematical Program-
ming, R. W. Cottle, M. L. Kelmanson, and B. Korte, eds., Elsevier Science Publishers, Amsterdam,
The Nederlands, 1981, pp. 195–248.

[14] N. NAGY, The maximum flow problem: A real-time approach, Master’s thesis, Department of Com-
puting and Information Science, Queen’s University, Jan. 2001.

[15] I. PARBERRY, Parallel Complexity Theory, John Wiley & Sons, New York, NY, 1987.

[16] M. J. SERNA, Approximating linear programming is log-space complete for P, Information Pro-
cessing Letters, 37 (1991), pp. 233–236.

[17] M. J. SERNA AND P. G. SPIRAKIS, The approximability of problems complete for P, in Optimal Al-
gorithms, International Symposium Proceedings, H. Djidjev, ed., Varna, Bulgaria, May–June 1989,
pp. 193–204. Springer Lecture Notes in Computer Science 401.

[18] A. SZEPIETOWSKI, Turing Machines with Sublogarithmic Space, Springer Lecture Notes in Com-
puter Science 843, 1994.

[19] A. S. TANENBAUM , Computer Networks, Prentice Hall, Upper Saddle River, NJ, 3 ed., 1996.

[20] J. L. TRAHAN , R. VAIDYANATHAN , AND C. P. SUBBARAMAN , Constant time graph algorithms on
the reconfigurable multiple bus machine, Journal of Parallel and Distributed Computing, 46 (1997),
pp. 1–14.

[21] J. L. TRAHAN , R. VAIDYANATHAN , AND R. K. THIRUCHELVAN, On the power of segmenting and
fusing buses, Journal of Parallel and Distributed Computing, 34 (1996), pp. 82–94.

[22] USENET, Comp.realtime: Frequently asked questions, Version 3.4 (May 1998). http://-
www.faqs.org/faqs/realtime-computing/faq/.

[23] H. YAMADA , Real-time computation and recursive functions not real-time computable, IRE Trans-
actions on Electronic Computers, EC-11 (1962), pp. 753–760.

