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Abstract

We show that all the problems solvable by a nondeterministic machine with logarithmic work 8{igaeag be
solved in real time by a parallel machine, no matter how tight the real-time constraints are. We also show that several
other real-time problems are in effect solvable in nondeterministic logarithmic space once their real-time constraints
are dropped and they become non-real-time. We thus conjecturidlthaintains exactly all the problems that admit
feasible real-time parallel algorithms. The issue of real-time optimization problems is also investigated. We identify
the class of such problems that are solvable in real time. In the process, we determine the computational power of
directed reconfigurable multiple bus machines (DRMBMSs) with polynomially bounded resources and running in con-
stant time, which is found to be the same as the power of directed reconfigurable networks with the same properties.
We also show that write conflict resolution rules such as Priority or even Common do not add computational power
over the Collision rule, and that a bus of width 1 (a wire) suffices for any constant time computation on DRMBM.

Key Words: real-time computation, timed-language, parallel complexity, reconfigurable multiple bus machine,
independence system, matroid.

1 Introduction

One direction in the area of algorithms and complexity theory for real-time computations started by the introduction
of well-behaved timed-languageg1]. Unlike previous models of real-time computation (e.g., [2]), timed languages
bridge the long standing gap between the complexity theorists and the real-time systems community: While timed
w-languages create a formal model, they also capture all the features of real-time computations as understood by the
systems community. A computation is thus deemed real time if the notion of correctness is linked not only to the output
but also to the notion of time; in particular, the real-time qualifier is introduced by timing constraints on either input
(that arrives at moments in time determined precisely by external factors) or output (which has associated deadlines,
this being the most common type of real-time constraints). Our claim that tirladguages capture all the features
of real-time computations as understood by the systems community is supported by the work from [1], where the for-
malism is used to model real-time computations encountered in practical areas. Real-time complexity classes, as well
as complexity theoretic properties of real-time computations, are studied in [3]. However, the computations analyzed
in [3] do not exhibit explicit deadlines; the real-time qualifier is given by the input (and its real-time characteristics).
Still, most practical applications do require that computations are carried out within deadlines.

For this reason, our main focus in this paper consists in computations with explicit deadlines: We study (clas-
sical) languages that can be recognized in nondeterministic logarithmic space, augmented with real-time constraints

(including deadlines). We show that all such computations can be carried out in parallel in a feasible manner (i.e., with
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polynomially bounded resources), no matter how tight the time constraints are. Conversely, we show that, although
hard to recognize in real time, the languages developed in [3] can be accepted in logarithmic space once the time
constraints are eliminated. Thus, we conjecture that (nondeterministic) logarithmic space contains exactly all the com-
putations that admit feasible real-time parallel implementations (again feasible means polynomial bounded resources,
or poly(n) processors in this particular case).

Motivated by this conjecture, we identify the class of optimization problems over independence systems that are
solvable in real-time, and we are able thus to extend the results obtained in [4]. We show that the solution obtained
by a parallel algorithm is arbitrarily better than the solution reported by a sequential one not only for the real-time
minimum-weight spanning tree (as shown in [4]), but for any real-time maximization problem over a matroid for
which the size of the optimal solution can be computed in real time.

In passing we offer a tight characterization of constant time computatioreonfigurable multiple bus machines
(RMBMs). We show that constant time directed RMBMs have the same computational power as the céried
figurable networksand that there is no need for such powerful write conflict resolution rules as Priority or Common
as they do not add computational power over the easily implementable Collision rule. As far as constant time RMBM
computations are concerned, we also find that a unitary bus width is enough—a simple wire as bus will do for all
constant time RMBM computations.

The results in this paper are presented as follows: In Section 3 we show that exabtly laliguages can be
recognized in constant time using a directed fusing RMBMs withy(n) processors and buses, each of width 1.

Our main results are the subject of Section 4, where we establish thallalapguage is computable in real time on
RMBMs, no matter how tight the real-time restrictions actually are, and we state the aforementioned conjecture. The

issue of optimization problems over independence systems is considered in Section 5. We conclude in Section 6.

2 Preliminaries

The cardinality ofIN, the set of natural numbers, is denoteddy Given somef : IN — IN, we denote by
DSPACE(f(n)) [NSPACE(f(n))] the set of languages [5] that are accepted by a deterministic [nondeterministic]
Turing machine which uses at mast f (n)) space (not counting the input tape) on any input of length [NL] is a
shorthand foDSPACE(log n) [NSPACE(log n)]. GAP, ; denotes be the following problem: given a directed graph
G=(V,E),V ={1,2,...,n}, determine whether vertgxis accessible from vertex

2.1 Timedw-languages

A sequence = 117y ... € INUw is atime sequenci it is an infinite sequence of positive values, and< ;. for

all i > 0. Any subsequence of a time sequence is a time sequeneellAdehavedime sequence is a time sequence
for which, for everyt € IN, there exists some (finité)> 1 such thatr; > t. A (well-behaved}imedw-word over
some alphabek is a pair(o, 7), wherer € IN* is a (well-behaved) time sequendec IN U {w}, ando € XF. A
valuer; from 7 represents the time at which the respectiydbecomes available as input. For some timedord

w = (o,7), detime(w) = 0. By abuse of notationjetime(L) = {detime(w)|w € L} for a timedw-languagel.



The concatenation of two timed words is defined as the merging of their sequences of symbols, ordered in nonde-
creasing order of their arrival time. Two further, disambiguating restrictions are imposed: any sequence of symbols
arriving simultaneously in one of the two words being concatenated appears as a subsequence of the result, and any
symbol arriving at some timein the second word being concatenating appears after all the symbols that arrive at time
t in the first word. The timestamps of all the symbols in the result of a concatenation are the original timestamps of the
respective symbols in the two words being concatenated. Given two tint@dguaged.; andL», the concatenation
of Ly andLy is L1 Ly = {wywa|wy € L1, ws € Lo}. The notatio [, w; [[;, L;] is a shorthand fow;ws - - - wy,
[L1L>...L,]. It has been argued (and well supported) [1] that well-behaved tivratiguages model exactly all the
real-time computations, so we henceforth assume this to be the case.

A real-time algorithmA consists in dinite control internal storage aninput tapethat always contains a timed
w-word, and aroutput tapecontaining symbols from some alphakit The input tape has the same semantics as a
timedw-word. During any time unitA may add at most one symbol to the output tape. The content of the output tape
of A working onw is denoted byD(A, w). There exists a designated symlfok A. A real-time algorithmA accepts
the timedw-languagel if, on any inputw, |O(A, w)|; = w iff w € L (where|z|, denotes as usual the number of
occurrences of in ). When a real-time algorithm is run in a multi-processor environment the finite state control is
understood to encompass all the processors and their interconnections. Similarly the internal storage is the ensemble
of all the storage available to individual processors. The input of the machine is the sequence of symbols from the
input tape, that are made available to the machine at moments in time determined by the associated time sequence.

Letw = (o, 7) be some timed>-word. Forip = 0 and any;j > 0, lets; = oy, , 1104, ,42...04,, such that§)

Ti; 141 = Tij_42 = -+ = Ty, and Q) 7,41 # 7;;. Then, the sizéw| of w is |w| = max;~¢ |s;| (the maximum
number of symbols arriving simultaneously). Given a total functfon IN — IN, and some model of parallel
computationM, the class rtPROCM(f) includes exactly all the well-behaved timeedanguaged. for which there
exists a real-time algorithm running dd that acceptd. and uses no more thgf{n) processors on any input of size

n. By convention, the class RROC (1) of sequential real-time algorithms is invariant with.

Pursuit and evasion on a ring The languageg;,, £ > 0, modeling thek-dimensional version of the pursuit and
evasion on a ring problem are developed in [3]. These languages are somehow a special case of real-time problems, as
their real time qualifier is given by the input that arrives in real time, whereas no explicit deadline is imposed on the
output. They also make for an interesting real-time computation as they form an infinite hierarchy with respect to the
number of processors used to accept them. We shall give here a rather brief overview of these languages, directing the
interested reader to [3].

Fix k,p > 0,7 > 2p, 7' = kr. PutL, = {(0,7)|o € {a,b}", 7 = 0,1 <i <+'}. LetINy = {enc(i)]1 < i <
k}, whereenc is a suitable encoding function frofN to {7}*. DefineL; = {(upuque, 7) | up € Ng, ug € {+, -1},
ue € {a,b}pP 7, 7y =tforall1 <i < |upuqucl}. LetL, =[]

For somew € {a,b}", letw = w()w(2)...w(k),

>0 Lei,» for a given constant > 0.

w(@)] =r, 1 <i <k (w()is asegmendf w), and let
u = upuqu. = detime(x) for somez € L, as above. The word will be “inserted” intow at some positiori
and contains three components; gives the segment af in which the insertion takes place, specifies whether



the insertion happens to the left or to the right, ands the actual word to be inserted. Then the insertion has the
effect of replacing symbols to the left or to the right (depending whethds — or +) of index:i in the specified
segment ofw with the content ofu. in a circular fashion. The result of the operation is a fdaif, '), wherew’

is the modifiedw andi’ is the index immediately following the last modified index:in Denote this operation by
(w,i) ® u. For somew € LoL, (w = w® ;. ,w’, withw® € L,, andw’ € L), and for some, 0 < ig < r — 1,

let s(w, t) = fst((0°,i0) @<, '), Whereo" = detime(w*), i > 0.

Let A be an algorithm that consides$w, t)(j) and usesr processorsy > 1. A may inspect (i.e., read from
memory) the symbols stored at some indices(im, t)(j). Many processors may inspect different indices in parallel.
For each processay, let . be the most recent index inspected by procegsap to timet. If some processor
inspects no symbols from(w, t)(j), then.] = —1. Let I be the “history” of inspected symbols up to time.e.,

IF = Uyt \{=1}. Letlo = mini<o<n(if), hi = maxi<o<n(if), andl = U, . I{. Then, we define
z(w(y),t) as follows: iflo = —1 thenz(w(j),t) = {i|l0 < i < r}; if lo # —1 and there existg ¢ I, j > hi or
j <lothenz(w(j),t) = {i|0 <i < r,i # lo}; otherwisez(w(j), t) = {i|lo < i < hi}; if, at timet, some processor
inspects an index outsidgw(j),t), then:! (j) = —1 and I} (j) = 0. Finally, letz(w, t) = Ule z(w(j),t), and call
z(w, t) the acceptable insertion zone at time

With z/(w) the set of indices whose values are modified by the subwérd L.; of w, Ly = {w € L,L,| for
i >0,z (w) C 2'(w, ci), and there exists > 0 andig, 0 < ip < 7, S. t. |8/ (w, t)]|q = |’ (w, E)|p}-

In order to eliminate the ambiguity generated by the somehow generic notations used in [3], we shall denote
henceforthl, by PURSUIT, for anyk > 0.

2.2 Models with reconfigurable buses

Two main models with reconfigurable buses have been developed in the literatuexdhigurable networkor RN
for short) [6] and theeconfigurable multiple bus machiier RMBM) [7].

The reason for such a choice of computational model (with reconfigurable buses) is the fact that the concept of
reconfigurable buses is both powerful (our constructions do use the power of reconfiguration) and feasible [6, 7] at
the same time—indeed, similar constructs are already present in VLSI circuits [8]. Note that their directed variants
(defined below) are just as feasible, considering that the switches that connect buses to processors contain active
components anyway [6, 8].

The reconfigurable multiple bus machine An RMBM [9, 7] consists of a set gf processorandb buses For each
processot and bus there exists awitchcontrolled by processar Using these switches, a processor has access to
the buses by being able to read or write from/to any bus. A processor may be sbigrtena bus, obtaining thus two
independent, shorter buses, and it is allowefis@any number of buses together by usinigise lineperpendicular to

and intersecting all the buses. DRMBM, ttigectedvariant of RMBM, is identical to the undirected model, except
for the definition of fuse lines: Each processor features two fuse lt@sr(andup). Each of these fuse lines can
be electrically connected to any bus. Assume that, at some given moment;fjuses., i, are all connected to the

down [up] fuse line of some processor. Then, a signal placed on;bsigransmitted in one time unit to all the buses
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i; such that; > 4; [4; < 4;].If some RMBM [DRMBM] is not allowed to segment buses, then this restricted variant is
denoted by F-RMBM [F-DRMBM] (for “fusing” RMBM/DRMBM). Thebus widthof some RMBM (DRMBM, etc.)
denotes the maximum size of a word that may be placed (and read) on (from) any bus in one computational step.

For CRCW (concurrent read, concurrent write; as opposed to CREW for concurrent read, exclusive write)
RMBMs, the most realistic conflict resolution rule is Collision, where two values simultaneously written on a bus
result in the placement of a special, “collision” value on that bus. We consider for completeness other conflict reso-
lution rules such as Common, Arbitrary, Priority, and Combining. However, we find that all of these rules are in fact
equivalent to the seemingly less powerful Collision rule (see Theorem 3.5(3)). We restrict only the Combining mode,
requiring that the combining operation be associative and computable in nondeterministic linear space.

An RMBM (DRMBM, F-DRMBM, etc.) family R = (R,),>1 iS a set containing one RMBM (DRMBM, F-
DRMBM, etc.) construction for each > 0. A family R solves a problen® if, for any n, R,, solves all inputs for
P of sizen. We say that some RMBM familfR is auniform RMBM familyif there exists a Turing machin& that,
givenn, produces the description &, usingO(log(p(n)b(n))) cells on its working tape. We henceforth drop the
“uniform” qualifier, with the understanding that any RMBM family described in this paper is uniform. Assume that
some familyR = (R,,) solves a problen®, and that eacl®,,, n > 0, usesp(n) processorsh(n) buses, and has a
running timet(n). We say then thaP € RMBM(p(n), b(n),t(n)) (or P € F-DRMBM(p(n), b(n), t(n)), etc.), and
thatR hassize complexity(n)b(n) andtime complexity(n).

It should be noted that a directed RMBM can simulate a nondirected RMBM by simply keeping all the up and
down fuse lines synchronized with each other:

Observation 1 X YRMBM(z(n),y(n), z(n)) € X YDRMBM(z(n),y(n),z(n)) foranyz,y,z : N — N, X €
{CRCW,CREW}, andY € {F-,¢}.

The reconfigurable network An RN [6] is a connected graph whose vertices are the processors and whose edges
represent fixed connections between processors. Each edge incident to a processor corresponds to a (bidirectional)
port of the processor. A processor can internally partition its ports such that all the ports in the same block of that
partition are electrically connected (or fused) together. Two or more edges that are connected together by a processor
that fuses some of its ports form a bus. DRN, directedRN is similar to the general RN, except that the edges are
directed. The concept of (uniform) RN family is identical to the concept of RMBM family. The &12&s(n), t(n))
[DRN(s(n),t(n))] is the set of problems solvable by RN [DRN] uniform families wittn) processorss(n) is also

called thesize complexifyandt(n) running time.

3 RMBM and NL computations
Lemma 3.1 GAP; ,, € CRCW F-DRMBM((n? — n)/2, n, 2) with Collision resolution rule and bus width

Proof. The following RMBM algorithm is a variant of the algorithm that computes the shortest path in a directed
graph [10]. Denote each processorfgy, 1 < ¢ < j < n, and letp;; know the value of botH,; and/;;, wherel is



the incidence matrix. The algorithm works as follows) Eachp;;, 1 < i < j < n directionally fuses busesandj
iff I;; = True; simultaneouslyp;, fuses buseg and: iff I;, = True. (b) Then,p;3 places a signal on bus andp: 2
listens to buse; p1o reports True if it receives some signal (the original or the collision one), &adse otherwise.
It is easily proved by induction over that, for anys, t, 1 < s,t < n, a signal placed on busreaches busiff vertex
t is accessible from vertex The content of the emitted signal is immaterial, so a bus widthffices. O

It is worth mentioning that the algorithm presented in [9] uses a CREW DRMBM (as opposed to the CRCW F-
DRMBM used in Lemma 3.1). Furthermore, this algorithm computes the shortest path between two vertices. There-
fore, it implicitly computes7 AP, ,,. This lets us conclude th&tAP; ,, € CREW DRMBM (2mn, n?, O(1)) (where
m is the number of edges in the given graph). However, in what follows, we will use the result based on the CRCW
F-DRMBM since, on one hand, it uses resources more efficiently, and, on the other hand, we believe that a Collision
conflict resolution rule is just as realistic as exclusive write.

Consider now some languadec NL. There exists a nondeterministic Turing machile= (K, %, 9, s¢) that
acceptd. and use®)(log n) working space. Without loss of generality, consider that the working (and input) alphabet
of M is¥ = {0,1}. Letk be the number of states @f, i.e., k¥ = |K|. The transition function is denoted By
§: (K x ¥ x %) — 2BUhhx(BU{LEHX{L.R} (with 1 the halting state), and the initial state ky M accepts an
input stringx iff M halts onxz. A configurationof M working on inputz is defined as a tuplés, i, w, j), wheres
is the statej andj are the positions of the heads on input and working tape, respectively, &nthe content of the
working tape. For two configurationg andwvs, we writev; F v, iff vo can be obtained by applyingexactly once
onw;.

The set of possible configurations bf working onz forms a directed grapt'(M,z) = (V, E) as follows: V'
contains one vertex for each and every possible configuratiaW aforking onz, and(vy,v) € E iff v1 b vs.

It is clear thatz € L iff some configuration(h, iy, wy, j5) is accessible irG(M, z) from the initial configuration
(s0,%0, w0, jo). For any configuratior{s,¢,w, j), ¢ can taken = |z| values; sincdw| = O(logn), there are at
mostpoly(n) possible contents of the working tape. There are fhuig(n) possible configurations af/. For any
languagel, € NL and for anyx, determining whether € L can be reduced to the problem of comput&g P, |y

for G(M,x) = (V, E), whereM is some nondeterministic, logarithmic space bounded Turing machine dediding
(we consider without loss of generality that the initial state is represented by \teatekthe final state by vertexin
G(M,x)).

Lemma 3.2 LetM = (K, 3, 4, so) be anNL Turing machine that accepfs € NL. Then, given some word |z| = n,
there exists & REW or CRCW F-DRMBM algorithm that compute&/ (M, x) (as an incidence matriX) in O(1)
time, and usingoly(n) processors angoly(n) buses of width.

Proof. Putn’ = |V| (n’ = poly(n)). The RMBM algorithm usegn + (n'> — n’)/2) processors: The first
processorp;, 1 < i < n, containz, i.e., eachlp; containsz;, thei-th symbol ofz; p, does nothing but write;; on
busi. We shall refer to the remainin(qz’2 —n')/2 processors ag;;, 1 < i < j < n'. Eachp,;; assembles first

Lin fact, neithemp; 3 nor p12 have any special characteristics, and any pair of distinct processors will do.



the configurations corresponding to vertieesindv; of G(M, =) and then considers the potential edgesv;) and
(v;, v;) corresponding t@;; andI;;, respectively. If such edge(s) exis; writesTrue to I;; and/orl;; as appropriate,
and False otherwise. There is no interprocessor communication between procegsdtsis any RMBM model is
able to carry on this computation.
Clearly, given a configuration;, p;; can compute in constant time any configuratipaccessible in one step from
v;, as this implies the computation of at most a constant nunt®e*() of configurations. The whole algorithm runs
thus in constant time. |
Some comments on the RMBM algorithm developed in the proof of Lemma 3.2 are in order. One can note that the
constant running time of this algorithm may be quite la@&*(*+1)); furthermore it depends on the number of states
in the initial Turing machine). On the other hand, the subsequent use of Lemma 3.2 will emphasize the need for the
RMBM algorithm to be as fast as possible. Thus, even if theoretically sound, the dependency of the running time to the
number of states is not a desirable feature. However, given some nondeterministic Turing mAachi(g, X, J, sg),
one can build using standard manipulation of states an equivalent Turing madhire (K’, X', ', s¢) such that
|0(s)] < 2foranys € K’. One can now construct the algorithimfrom Lemma 3.2 based o/’ instead of}M.
Then, althoughG (M, z) may grow (still,|V'| remainspoly(n)), the running time of4 is now upper bounded by a
very small constant, which no longer depends on the number of stalésof M/’ for that matter).

Lemma 3.3 NL € CRCW F-DRMBM (poly(n), poly(n),O(1)), with Collision resolution rule and bus width

Proof. Given some language € NL, let M be anNL Turing machine accepting. For any inputz, the F-DRMBM
algorithm that acceptg works as follows: Using Lemma 3.2, it obtains the grapt/, =) of the configurations of

M working onz (by computing in effect the incidence matrixcorresponding t&=(M, z)). Then, it applies the
algorithm from Lemma 3.1 in order to determine whether vertgkalting state) is accessible from verteXinitial

state) inG (M, z), and accepts or rejecisaccordingly. In addition, note that the valugs andI;; stored ap;; after

the algorithm from Lemma 3.2 are in the right place as inpupfpin the algorithm from Lemma 3.1. It is immediate
given the mentioned lemmas that the resulting algorithm acdepiithin the prescribed time and space bound§&]

Conforming to Lemma 3.3, anyL language can be accepted in constant time by a directed RMBM. In fact, the

relation between directed RMBMs aft languages is even stronger:

Lemma 3.4 CRCW DRMBM(poly(n), poly(n), O(1)) C NL, for any write conflict resolution rule and any bus
width.

Proof. Consider som& ¢ CRCW DRMBM (poly(n), poly(n), O(1)) performing stepl of its computation(d <
O(1)). We need to find aNL Turing machinel/, that generates the description®fter stepi usingO (log n) space,

and thus [11] afNL Turing machinel; that receives’ (the number of processors R) and some, 1 < i < n/, and
outputs the Q@ (log n) long) description for processeoinstead of the whole description. We establish the existence of
M, (and thusM}) by induction overd, and thus we complete the proof; indeed, once we have the madhinese
start with M/, (that receives the input of the algorithm) which in turn ud€sto generate (as detailed below) and run

repeatedly)M and so on [11].



M, exists by the definition of a uniform RMBM family. We assume the existende/gf,, M,_, and show how
My, is constructed. For each procesgprand each bug read byp; during stepd, M, performs (sequentially) the
following computation:}M; maintains two word$ andp, initially empty. For evenp; , 1 < j < poly(n), My deter-
mines whethep; writes on busk. This implies the computation @ AP; ; (clearly computable in nondeterministic
O(logn) space since it islL-complete [12]). The local configurations of fused and segmented buses at each processor
(i.e., the edges of the graph f6tAP; ;) are obtained by calls td/; ,. The computation oG AP; ; is necessary
to ensure that we take; into account even whep; does not write directly to buk but instead to another bus that
reaches bus through fused buses.

If p; writes on bus, then)M,; usesM),_, to determine the value written byp; , and updates andp as follows:
(a) If bis empty, then itis set to (p; is currently the only processor that writes to li)sandp is set toj. Otherwise:
(b.1) If R uses the Collision resolution rule, the collision signal is placed ifh.2) When the Common rule is used,
M, compared andv. If they are different, the input is rejecteth.3) If the conflict resolution rule is Priority, and
j are compared; if the latter denotes a processor with a larger priorityptiseset tov andp is set toj, otherwise,
neitherb nor p are modified; the Arbitrary rule is handled similar(y.4) Finally, if R uses the Combining resolution
rule with o as combining operatiom,is set to the result df o v (since the operation is associative, the final content
of b is indeed the correct combination of all the values written onkus

Once the content of bus has been determined, the configuratiorppfs updated accordingly, and p are reset
to the empty word, and the same computation is performed for the next bus readfpr the next processor. The
whole computation ofi/; clearly takesD(log n) space. |

Given Observation 1 and thBit. = DRN(poly(n), O(1)) [6], Lemmas 3.3 and 3.4 imply the following results:

Theorem 3.5 1. CRCW DRMBM(poly(n), poly(n),O(1)) = NL = CRCW F-DRMBM (poly(n), poly(n), O(1))

with Collision resolution rule and bus width
2. DRMBM(poly(n), poly(n), O(1)) = DRN(poly(n), O(1)).

3. For any problemP solvable in constant time by some (directed or nondirected) RMBM family wsinggn)
processors angoly(n) buses,P € CRCW F-DRMBM (poly(n), poly(n),O(1)) with Collision resolution
rule and bus width.

Part of Theorem 3.5 is an expected result. Indeed, a similar result for DRNs exists [6], and it is known that
(nondirected) RNs are as powerful as (nondirected) RMBMs [7] (and the two models using polynomially bounded
resources solve in constant time exactly all the problenis.idt is thus expected that such properties hold for the
directed variants of the two models (this time combined with nondeterministic Turing machines, as formally shown in
Theorem 3.5). The other part of Theorem 3.5 on the other hand is very interesting: For constant time computations on
DRMBM, bus width does not matter; any problem can be solved using buses ofwillthis the case of (undirected)
RMBMs, it follows from Theorem 3.5(3) that segmenting buses does not add computational power over fusing buses,
and that the collision rule is the most powerful write conflict resolution method.



4 Small space computations are real-time

We have now all the necessary ingredients to state our main result linking real time with logarithmic space computa-
tions. First though, we have to make an additional assumption: We henceforth consider that the deadlines imposed
on real-time computations are reasonably large compared to the processor clock frequency, so that any deadline en-
compasses a constant (and small) number of processor cycles. For instance a processor operating at 1GHz will not
need to accommodate deadlines measured in single-digit nanoseconds (but will cope well with say 100 nanoseconds
deadlines). We believe that this is a reasonable assumption, for indeed we are not aware of any real-time application
that requires such exceedingly small deadlines. In addition, such an assumption is not even necessary throughout the
paper, but only for Theorem 4.1 and the subsequent Claim 1.

Note now that the potential existence ofdaadlinecan be modeled as a well-behaved timedvord [1] by
Wa = (o, 7), with the following semantics: A special symhwlis present whenever the current time does not ex-
ceed the deadline; if the deadline passed, then the symbols that arrive as input are all another designated symbol
If the computation is completed at a moment in which the input symhal ilken it has met the associated deadline;
otherwise, the deadline has passed.

With this definition ofi¥;, we have the following relation linkindlL with real-time computations.

Theorem 4.1 Consider the timed>-word w = (o, 7)W, with W,; some timed word modeling a deadline some
input for some problen® € NL, andr; = 7 = - = 7. Thenw € t-PROCRCWVFPRMBM (5514, (|51)) for any

w thus constructed.

Proof. We note that the size complexity of an RMBM withly(n) processors angoly(n) buses ipoly(n). Then
all the processing implied by Theorem 3.5 takes constant time, and thus accommodates any reasonable time sequence
T associated with the computation. O

The relation betweeNL and real-time computations can be informally stated as follows: Suppose we have an input
for a problem inNL. We impose some (any) deadline for this input, and we feed it to some machine. If that machine
happens to be a CRCW F-DRMBM, then it is able to produce the results while meeting the respective deadline.

In some sense, one may argue that the inclusion relation from Theorem 4.1 is in fact an equality, conforming
to Theorem 3.5. IndeedyL computations ar¢he onlycomputations in the classical sense that can be performed
in constant time by DRMBMs, no matter how many processors and buses are used; thus, given any deadline (in
effect imposing a constant upper bound on the running time), no computation oNtsichn be successfully carried
out. However, there might exist real-time computations (for example, not exhibiting explicit deadlines and thus not
necessarily having constant time constraints) that are nidt.ibut can still be performed within the given resource
bounds. Indeed, one candidate for such computations can be the family ofdita@duagedPUrRSUIT;, £ > 1,
presented in [3] and summarized in Section 2.1. We shall try to see what is the classical computation corresponding
to this problem.

In Theorem 4.1, waddeddeadlines (that is, real-time constraints) to problems. We face now the reversed problem,

namely how can oneliminatethe real-time qualifier from the specification of some problem. Analyzing the form of



the wordW; modeling deadlines offers the clue. Indeed, one can notice that, from some time on, the symbols from
W4 no longer represent the input. Instead, they consist of symbaial x that model the timing constraints imposed

on the computation. Similarly, in a real-time problem for which the input is infinite, a prefix of that input represents
the same problem, except that in the case of such a prefix, the input “stops coming” at some time. This is the most
general restriction to a classical environment one can model, since the input is finite in such an environment.

Definition 4.1 Consider some well-behaved timedlanguagel; i > 0 is a progression poinfor (o, 7) € L iff?
7. # Tiv1. Letnow Ly = {o’| there exists some (finite) progression paink.t. (o,7) € L ando’ = o1._,}
(each word inL; is constructed by taking a word frof, restricting its length to a finite, and discarding the time
sequence). If.; € C for some complexity clas€, we say that € C/rt. L, solves the same problem &s but
without real-time constraints; we thus say tlias thereal-time counterparof L, or L, is thestatic versiorof L.

Note in passing that Definition 4.1 not only allows us to study the pursuit problem in the context of Theorem 4.1,
but it offers a more concise formulation of Theorem 4.1 itself:

Theorem 4.2 NL/rt C rt-PROCCRCW FDRMBM (1,14, (1)),
We now show that pursuing something is easy outside the real-time paradigm:

Theorem 4.3 For anyk > 0, PURSUIT, € L/7t.

Proof. Aword ws, |ws| = n, in the static version dPURSUIT, contains:(a) an initial wordw® € {a,b}",r < n (the
initial configuration), andb) m moves by the pursuee (denotedbyc L.;, 1 < i < m; each such a move changes
a maximum ofp < r symbols fromuw?).

Let M be a deterministic Turing machine accepting the static versidPuefsuiT,. M keeps two counter§’,
andCy, one fora’s and the other fob’s. As " is scanned, the two counters are incremented accordingly. Once the
end ofw? is reached)/ performs the following step for eaali, 1 < i < m: M identifies that portion ofs® which is
changed byv?. Then,M scans this portion, decrementi6g or C;, for eacha or b it encounters. Finally)/ identifies
that portion ofw’ that changes® and scans it, incrementin@, and/orC;, accordingly. At the end of stem of such
a computation(, andC;, contain precisely the number afs andb’s that are present in® as it is changed by all
w’. When the end of the input is reachéd, compare<’, andC;, and accepts the input iff they are identical. All the
counters ,,, Cy, two more pair of counters needed to delimit the cureehand the portion of interest in®) clearly
takeO(logn) space. Manipulating these counters involves simple arithmetic operations on indices (that is, numbers
bounded above by), hence they are computablelinThe space required by the whole computatio® {§ogn). O

Theorem 4.3 is an interesting result: everPURSUIT, requires a lot of computational effort (in particular, it
cannot be solved at all if less thak processors are available [3]), it becomes a very simple problem (not oNlly,in

but even inL) once the real-time constraints are eliminated. Thus, Theorem 4.3 justifies the following conjecture:

Claim 1 NL/rt = rt-PROCCRCWFPRMBM (4,51, ().

20ne does not want to split a bunch of symbols arriving at the same time, since such a bunch often represents a nondivisible piece of the input. ...

10



algorithm GREEDYMAX (E, ind; s,) algorithm PARALLEL GREEDYMAX (E, ind; sg)

1. let(e1, ez, ..., e,) be an ordering L sortk, obtaining(es, ez, -, en)

. s.t.c(es) > cleirr)

of E with c(ei) 2 C(€i+1) ;!
2. sg—0;r9 0
2. Sg— 0 . .
. 3. for ¢ <— 1...n doin parallel
3. fori«— 1...ndo 31 ri e urfes, e e}
3.1 if ind(sy U {e;}) then e L 1" 2w O _
sy — 5y U{er} 3.2, if rio1 <rithensy, — sy U{e;}
(@) (b)

Figure 1: Greedy algorithms for maximization problems.

5 Independence systems and real-time computation

We focus our attention now to optimization problems. In this context, we identify the class of such problems that can
be computed in parallel real time. Based on this identification, we extend previous results [4].

S C 2F is a set (offeasible solutiorjswith elements from a finite séf. A mappingc : £ — IR is defined, and
then extendedto: S — IR, c(s) = >, c(i). Consider theptimization (maximization) probleover S of finding
max{c(s)|s € S}. Without loss of generality let(i) > 0, for all i € E. The set of optimal solutions to the problem
is thus not changed if one replacgsy its hereditaryclosureS* defined asS* = SU {s|s C ¢/, s’ € S}. (E,S5%)
is anindependence systerfihe (algorithmic) input for a search problem can be considered in multiple ways [13]. In
particular, the sef can be quite large and is thus impractical to give explicitly as input; so we consider instead that
the input for a search problem is the ¢&{together with the associated weights), plus an “independence oiacle”
such thatnd(s) = true iff s € S. The transition from an optimization problem to an equivalent language is standard
[11], so we say by abuse of notation that a certain optimization problem is or is Nat in

Definition 5.1 [14] Let E be a finite set and C 2F, such thatS has themonotonicity propertys; C sy € S =
s1 € S. Then,(E, S) is anindependence systeand members of' are said to béndependent

Let (E, S) be an independence system. For eAck F, thelower rankir(F') [upper rankur(F")] of F' (with
respect toS) is defined as the cardinality of the smallest [largest] maximal independent subsBtsiofF) =
min{|s||s € S;s C FandsU{e} ¢ Sforalle € F\ {s}}; ur(F) = max{|s||s € S;s C F}.

An independence systefi, S) is called amatroidif, for any F' C E, it holds thatlr(F') = ur(F).

A greedy algorithnfor maximization problems on general independence systems [14] is given in Fig. 1(a). The
algorithm contains one statement which depends on the actual independence system being considered (the condition
online 3.1).

Let (E,S) be an arbitrary independence system, and consider a maximization problema vitie solution
returned byGREEDYMAX, and s* the optimal solution. Then [14] for any weight functien: E — IR,

minpcp % < jgj"g < 1. It follows that algorithmGREEDYMAX on a matroid(E, S) yields the optimal so-
lution for a maximization problem for all objective functions £ — R,

11



5.1 Areal-time perspective

To put the definition of matroids in another way [15, 11], matroids are independence systems with the additional
property that all the maximal independent subsets have the same size (thereforgisince, 1 < i < n, the greedy
algorithm obtains the optimal solution). In light of this formulation, the parallel implementati@dBR&fEDYM AX,

shown in Fig. 1(b), is immediate [11]. The algorithm usasrk oracle The functionur{es, es,...,e;} introduced

by Definition 5.1 and used at step 3.2 gives the size of some (hence, whéhe\#ris a matroid, any) maximal

independent set ovée, es, ..., e;}.

Lemma 5.1 Supposeur{e;,es,...,e;} € DRMBM(poly(i), poly(i),t(i)) (i.e., ur{e,es,...,e;} can be com-
puted by a DRMBM in time (i) using a polynomially bounded number of processors and buses). Then,
PARALLEL GREEDYMAX € DRMBM(poly(n), poly(n), O(t(n))).

In particular, if t(i) = O(1), thenPARALLEL GREEDYMAX € DRMBM (poly(n), poly(n), O(1)).

Proof. The initial sorting (step 1) can be achieved in constant time on a DRMBM with polynomially bounded
resources [16] and thus in constant time on a DRMBM usinty(n) processors and buses by Theorem 3.5(3).
Steps 2 and 3.2 are trivially computable in constant time with polynomially bounded resources. Each of the
calls towur in step 3.1 can be performed iifn) time by usingn independent copies of the RMBM computing

ur. Finally, each of thex RMBMs communicate with one other processor. Theseew processors implement

step 3.2 and report the result. Since both the argumeni-adnd the result returned by this function are poly-
nomial in size,poly(n) buses suffice for such a communication. All the resources are polynomially bounded,
and thusPARALLEL GREEDYMAX € DRMBM(poly(n), poly(n),O(t(rn))), as desired. It is then immediate that
PARALLEL GREEDYMAX € DRMBM(poly(n), poly(n), O(1)) if t(i) = O(1). O

Lemma5.2 Let (E, S) be some independence systdin= {ej,es,...,e,}, and letA be an algorithm solving a
maximization problem oveE, S). Denote byt a(n) [t.-(n)] the running time ofA [the time required to compute
ur(E)] on a DRMBM using a polynomially bounded number of processors and buses.tTher),is a lower bound

forta(n).

Proof. Lets* = {s1,s2,...,s;} be the solution computed by. Sinces* is an optimal solution, it follows that
ur(E) = k. Givens*, k can be computed in constant time on a DRMBM: Assume without loss of generality that
the elements of* are stored in the registers efprocessorg;, 1 < i < n, such that exactly: processors hold

one element froms* each. Then, each processggrsets a designated registersuch that; = 1 if p; holds a value
from s* andv; = 0 otherwise. Then, a prefix sum ovey, 1 < i < n, computest. It follows that|s*| (and thus
ur(E)) can be computed in constant time given since prefix sum takes constant time on RMBM [9]. Therefore,
tur(n) = O(ta(n)) (0rta(n) = Q(ty-(n))), as desired. O

Theorem 5.3 Let M be the class of maximization problems that can be described as a matroid and for which
ur € DRMBM(poly(i), poly(i),0(1)). Let P be some maximization problem over some independence sys-

12



tem (E,S). ThenP € M iff P € DRMBM(poly(n),poly(n),O(1)) (equivalent in turn toP € NL and
{P}/rt C rt-PROCCREWFDRMBM (4,511, (1))

Proof.  In light of Lemmas 5.1 and 5.2 the only thing that needs further consideration is showing’ tlmat
DRMBM (poly(n), poly(n),0(1)) implies that(E, S) is a matroid. This is however a direct consequence of the
lower bounds on optimization problems over independence systems that are not matroids [11, 13], which place these
problems outsidélL (and thus outsid®RMBM (poly(n), poly(n), O(1))). O

By Theorem 5.3 we have precisely identified—among those optimization problems that can be expressed as in-
dependence systems—the class of such problems solvable in parallel real time. We believe that this result may be
of interest for at least two reasons: On one hand, consider those independence systems—or problems that can be
formulated as such—not in (with M as defined in Theorem 5.3). For these problems, finding an exact solution in
real time is asymptotically impossible, even if a parallel machine is available (in the sense that the running time of any
(poly(n)-processor) algorithm solving such a problem exceeds for large enough input size any (implicit or explicit)
constant deadline). In such a case, one should probably look for either further restricting the problem (in order to
bring it within M), or find a reasonable approximation algorithm that iflin On the other hand, Theorem 5.3 easily

extends previous results, as we shall show in what follows.

5.2 Beyond speedup, revisited

The problem of computing thainimum-weight spanning tré®ST) of a connected, undirected, and weighted graph

in real time is investigated in [4], where it is shown that the best approximate solution to the MST problem returned
by a sequential algorithm can be arbitrarily worse than the solution obtained by a parallel algorithm (which actually
returns the optimal solution). We shall not, however restrict ourselves to connected graphs, since the extension to
unconnected ones (when the tree becomes a forest) is immediate.

MST can be trivially transformed into a maximization problem: just negate all the edge weights and add to every
weight the absolute value of the maximum weight. It is also immediate that the MST problem can be expressed as a
matroid [15]. Thus, using Theorem 5.3 we can both tighten and extend the result from [4].

For one thing, the result in [4] is not tight: Time up %6, for some0 < e¢ < 1, is allowed for each (parallel
or sequential) real-time computation leading to the result. This running time asymptotically exceeds any (however
large) constant deadline imposed to the computation by some real-time environment, so the settings used in [4] are
too permissive for our environment. Fortunately, we are able to obtain precisely the same result for true real-time
computations. Indeed, we show in what follows that, for any real-time environment one can encounter, a parallel
algorithm can solve MST arbitrarily better than a sequential one. That is, while the parallel implementation is able to
return an optimal solution, even an optimal sequential algorithm can only report an approximate result in the limited
time which is available due to the real-time constraints. This result, an immediate consequence of Theorem 5.3, is

given in Lemma 5.4 below.

Lemma 5.4 Let MST denote the problem of computing the minimum-weight spanning forest on undirected and
weighted graphs. ThenM[ST € DRMBM/(poly(n),poly(n),0(1)) (and thusMST € NL, {MST}/rt C
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rt-PROCCRCWF-DRMBM 1,,1,(1))), and the best approximate solution to any problem f{&d8T} /7 returned by a
sequential algorithm is arbitrarily worse than the solution obtained by a parallel RMBM algorithm with polynomially
bounded resources.

Proof. Function ur for MST can be computed in logarithmic space (and thus in real-time on RMBM):
ur{er,eq, ..., e;} is simply: minus the number of connected components in the graph inducée; bys, . .., e;},
and can thus be computed by performing a reflexive and transitive closure (whiciNls@mplete problem [12]).
By Theorem 5.3, it follows that MST can be compuedctlyin real time on an RMBM, no matter how tight the
deadlines are. However [4], an optimal sequential algorithm solving the same problem has a running time that cannot
accommodate even the most generous deadline, and thus a sequential algorithm to some real time variant of MST can
only guessomesolution; the guess can be arbitrarily bad. O

In fact, the second part of the proof of Lemma 5.4 also proves that this type of behavior (namely a parallel algorithm
being able to compute an arbitrarily better solution than the optimal sequential one) is not an exclusive feature of the
MST problem, but it applies to many more real-time computations instead. Indeed, the proof of Lemma 5.4 requires
thatur is NL (clearly applicable to the whole cladd), that the underlying independence system is a matroid (ditto),
plus the result from [4] (which immediately holds for any problem that does not admit a sequential algorithm with
constant running time [4]; however no optimization problem can be solved in constant sequential time since at the

very least the weights of all the elementsioheed to be inspected). Therefore:

Corollary 5.5 With M as in Theorem 5.3 and for arfy € M, the best approximate solution to a problem{iR} /rt
returned by a sequential algorithm is arbitrarily worse than the solution obtained by a parallel RMBM algorithm with

polynomially bounded resources.

In other words, the results from [4] do hold even for the tightest real time environment. In addition, these results
are not applicable only to the MST, but to a whole class of problems instead, narhfilgm Theorem 5.3. That is,
there exists not only a problem, but a whole family of them for which a parallel implementation can do something
other than speeding up computation, namely improve the offered solution.

6 Conclusions

We addressed previously a number of questions associated with real-time computations featuring implicit deadlines
[3]. In this paper, we focused our attention on computations with explicit deadlines. Given any langudge in

we showed in Theorem 4.1 that such a language can be accepted by a parallel machine with polynomially bounded
resources, in the presenceanfy (i.e., however tight) real-time constraints.

According to Theorem 4.3, even a language Fk®suIT,, whose acceptance requires considerable computational
effort, can be accepted in logarithmic space once the real-time constraints are dropped. This allows us to state Claim 1,
which offers a nice counterpart of the parallel computation thesis [11]. In this thesis, NC is conjectured to contain
exactly all the computations that admit efficient parallel implementations; by contrast, we conjectite toatains

exactly all the computations that admit efficient real-time parallel implementations.
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As well, we considered the class of maximization problems over independence systems, showing that a problem
pertaining to this class is solvable in real time iff it is a matroid and the size of an optimal solution is computable in
real-time. Given this result, we showed that there exists not only a problem but a whole family of them for which
a parallel implementation can do something other than speeding up computation, namely unboundedly improve the
offered solution.

In light of Claim 1, the following research direction becomes useful: Which are those problems that, although
possibly not solvable in the real-time environment imposed by some real-time application, admit “good” approximate
solutions provably achievable in any real-time environment? Do they form a well-defined complexity class? If so,
which are the problems pertaining to such a class? This paper offers a solid basis for the pursuit of this direction, since
we identify here a class of candidates for approximating algorithms. In addition, this class of candidateshd ether
F-DRMBM(poly(n),poly(n),0(1)), whichever is more natural for the given problem, since they are in fact identical
as shown by Theorem 3.5.

We also determined the computational power of DRMBM running in constant time. We showed that DRMBM
and DRN with constant running time have the same computational power. In addition, we showed that no conflict res-
olution rule is more powerful than Collision. According to this result, the discussion regarding the practical feasibility
of rules like Priority or Combining on spatially distributed resources such as a buses is no longer of interest. Indeed,
such rules are not only of questionable feasibility, but not necessary too. Finally, we identified a gap in the complexity
hierarchy of RMBM computations as well: As far as constant time computations are concerned, there is no need for a
large bus width; instead, buses composed of single wires are sufficient.

Another interesting open problem naturally arises from the characterization described in the above paragraph: does
a form of Theorem 3.5(3) hold for other models of parallel computations? On one hand, we showed that unrealistic
rules like Priority and Combining do not add computational power. However, this result is obtained for the restricted
class of DRMBMs running in constant time. Thus, we wonder whether such a result holfls) DRMBMs in
general, not only those with constant running time, &dfor other models of parallel computation (RN, PRAM,
etc.). On the other hand, we wonder whether the bus width can be bounded for DRNSs running in constant time as it
has been bounded in the case of DRMBMSs. In other words, can the bus width in a DRN be bounded by a constant?
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