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Abstract

In the data-accumulating paradigm, inputs arrive continuously in real time, and the computation terminates when
all the already received data are processed before another datum arrives. Previous research states that a constant upper
bound on the running time of a successful algorithm within this paradigm exists only for particular forms of the data
arrival law. This contradicts our recent conjecture that those problems that are solvable in real time are included in
the class of logarithmic space-bounded computations. However, we prove that such an upper bound does exist in
fact in both the parallel and sequential cases and for any polynomial arrival law, thus strengthening the mentioned
conjecture. Then, we analyze an example of a non-continuous data arrival law. We find similar properties for the
sorting algorithm under such a law, namely the existence of an upper bound on the running time, suggesting that such

properties do not depend on the form of the arrival law.
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1 Introduction

In the classical study of algorithms, input data are considered to be available at the beginning of computation. The
algorithm eventually terminates when the input data have been processed. What happens though when the data arrive
while the computation is in progress? A paradigm considering such computationsist#haccumulating paradigm
[4, 5, 6]. Here, data are considered as being an endless stream. An algorithm terminates when all the data that were
already received have been processed.

In this paper we investigate the computational power of data-accumulating algorithms. As a case study we consider

sorting algorithms, which are basic elements for various applications. It has been shown [5] that, if the daf@sarrive
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enoughthen a successful algorithm (i.e., one that terminates) must have a running time upper bounded by a constant;
when the running time exceeds that constant, the algorithm never terminates. Our results indicate that the qualifier
“fast enough” is not necessary, and a constant upper bound for the running time exastgotynomial data arrival
law, and for any (parallel of sequential) d-algorithm. This is a negative, yet important result as it establishes a limit that
was not previously known. Such a limit, however, is consistent with the conjectured inclusion of real-time problems
in the class of logarithmic space-bounded computations (NLOGSPACE) [3].

Subsequently, we extend these results by considering another data arrival law which is significantly different from
the polynomial one, being a non-continuous function. We find similar properties for the sorting algorithm, namely, the
existence of an upper bound on the running time. Therefore, we conjecture that these properties are not dependent on

the expression of the arrival law.

2 The Data-Accumulating Paradigm

In the data-accumulating paradigm [4, 5], input data arrive as time passes, conforminigt arrival law. The
computation terminates when all the data currently arrived have been processed. Algorithms pertaining to this class
are calleddata-accumulating algorithmar, for short,d-algorithms The form proposed in [5] for the data arrival law

is

Fln,t) = n+ kn't?, @)

wheren is the size of the initial data set, akdy, andg3 are positive constants. Such a form of the arrival law is rather
flexible, and its polynomial form eases the reasoning about algorithms that use it. In particular, note thgtwhen
the amount of data that arrive in one time unit is independent of the size of the initial dataet. lIf then the data
flow is constant during the time, while in the ca$e- 1 the flow of data actually increases with time. Similarly, when
8 < 1, fewer and fewer data arrive as time increases.

A standard algorithm, working on a non-varying set of data, is referred tstiaalgorithm. Consider a given
problemlIl. Let the best known static algorithm fBirbe A’. Then, a d-algorithmd for II working on a varying set of
data of sizeV is optimalif and only if its running timeT'(V) is asymptotically equal to the tini€ (IV), whereT”(N)
is the time required byl’ working on theN data as if they were available at time= 0.

The problems considered in [5] are solvable in polynomial time, T§(N) = O(N®), where« is a positive

constant, withl” defined as above. This implies that an optimal d-algorithm must have a time compleXigof=



cN<«, for some positive constant. If the d-algorithm terminates at timethen we haveé = ¢N“. Considering the

data arrival law given by Relation (1), the termination titr@an be expressed by the implicit function

t = c(n+ kn7t9)~, (2)

It is shown in [5] that the d-algorithm will terminate farin some interval that depends on the constants involved
only for certain values o, §, and~y. For example, it is claimed that, #f = 1, for a3 < 1, thenn grows as
(1/(ke'/*))t(=eB)/a_ That is, for anyn, the d-algorithm will eventually terminate, even if its running time can be
very large. Fora5 > 1, on the other hand, the algorithm terminates only for bounded values mireover, for
af3 > 1, the running time itself is upper bounded by a constant (this bound not being present in the other cases).

The parallel d-algorithm is defined in the same manner as the sequential one, except that its exectifigiMime
is compared to the execution tirig(.V) of a parallel static algorithm that uses the same number of proceB$dis
as the parallel d-algorithm. The equation for the parallel optimal d-algorithm is similar to the one obtained for the
sequential case:

cp(n + kntl)™

tp= TP, 3)

where the subscript denotes the parallel case afdis the number of processors. It is assumed in [5] thas a
polynomial function ofN.

We quote the following main results obtained in [5]:

Proposition 2.1 Given a problem admitting an optimal sequential d-algorithm obeying Relation (2) and an optimal
parallel d-algorithm obeying Relation (3), and fey/P < ¢, a5 =1,y =1, andP = {(n + knvtg)‘s, with some
constants;, ¢ > 0, andd, 0 < 0 < «, it holds thatlim,, ., 5.1/« t/Pt, = co. In addition,t/Pt, > c/c, for all

values ofx, 3, v.

This result shows that the quantityPt,, (and thus the speedup of the parallel algorithm) may become arbitrarily

large. This implies that the normal bound for parallel speedup [2, 7] no longer holds.

3 Sorting

We now study sorting d-algorithms. Note that a similar problem is investigated in [5], but there the result is a search

tree. Conceivably, there exist applications working in real time on large sequences of data for whilfiothe)

INote, however, that our study in the present paper covers d-algorithms that have a time compteXity efien if they are not optimal.



access time to the elements in a search tree is not acceptable. Therefore, the sorting algorithms discussed here output
anarray of sorted elements (the access time is th\{$)). Henceforth, we refer to such processingsaging on a
linear structure(or simplysortingwhen there is no ambiguity).

For comparison, we use an optimal static sorting algorithm whose running téneikg n) [8].
3.1 A First Upper Bound on the Running Time

By definition, data accumulates as the computation proceeds. Generally, we consider that the incoming data are
buffered until some amountis reached, and then the buffered data are inserted into the already sorted sequence (for

the non-buffered case simply sgto 1). The time complexity of such an operation is given by the following lemma.

Lemma 3.1 Let the length of the already sorted sequencé. Ben, the time complexity of insertingnew elements

into the sorted sequence@q log ¢ + 1), for anyq and! such that eithey = 1 orl > (qlogq)/(q — 1).

Proof. The upper bound is immediate. For the lower bound, we have the following: Supposing that the distance
between the insertion point of some element and the end of the bufit)igthe general case), the time required for
inserting a datum into some sorted sequende(is. If the newly arrived data are not sorted, then one should insert
them into the buffer one by one. Therefore, the insertion time for the whole sequefi¢g js On the other hand,
the number of operations needed to gadata is2(q log ¢) [8], while merging the sorted sequences requitég+ 1)
operations [8]. |
We did not consider the case in which more thia@lements come before the processing of the already arrived
data is finished. However, this case is equivalent to the one in which the data arrive too fast and the d-algorithm never
stops. Indeed, as seen below, the necessary condition (4) for the algorithm to terminate in finite time covers this case.
Lett, be the time in which a buffer of sizgis filled. At some time,., when the buffer is filled and is ready to be
inserted, the length of the already sorted sequence wilkbe + kn? (t2 — tfj), because all the arrived data have been
inserted, except the data which are in the buffer (otherwise, some elements are lost). We will consider for simplicity
thatg = 1, but similar results can be obtained for other values as well. In this context, the time interval between two
arrivals isdt = 1/kn”. Suppose that the algorithm stops at titnerhis means that, at timg all the buffered data
have been inserted before another datum arrives. Thus, the time required to insert the buffer (given by Lemma 3.1)

should be no larger thatt, i.e.,

dt > qlogq+n+kn?(t — t,). (4)



Considering the data arrival law of Relation (1), the titpen which the buffer is filled is given by = kn“Ytg.
Then, simple calculations let us derive the following bound on the computation time:
1 1 n
t< —s+—q(1-1 - — 5
= (knv)2 o a1 —logq) knY ©)
This imposes a limit on the running time of any sequential sorting d-algorithm that terminates for the polynomial
data arrival law given by Relation (1). Henceforth, the right-hand side of Relation (5) will be denotéd.byve are

now ready to determine the complexity of sorting on a linear structure.

Theorem 3.2 Under the polynomial data arrival law given by Relation (1), the running time of any sequential d-
algorithm for sorting on a linear structure i®(N?). Thus, sorting on a linear structure does not admit an optimal

d-algorithm.

Proof. Assume first thag is constant with respect to the running time (however, if it is a functiom ¢fien the proof

is not affected). By Lemma 3.1, the time required to inserigteements from the buffer ®(qlog ¢ + 1), wherel is
the number of already sorted elements. This tim@(i8, sinceq is constant. Thus, the total time required for sorting
N elements i9( l[i/;f ql) = ©(N?), as desired, sindeincreases by each time a new buffer is inserted.

Assume now that the sizgof the buffer varies with time. We ha f =L log q%. Obviously,q > 1 and

knY

t’s > 0 (otherwise, the algorithm never terminates). If there is some constant (with respect to th timef) that

q < @ everywhere, then the relation derived for constant buffer size holdsrtas/ then be approximated lgy and

the rate of growth does not change). Therefore, it is enough to consider the eabeinfj an increasing function.
Then,g—g > 0, and this impliesag—% < 0, becauséogq > 0 for ¢ > 1. That is,t; is a decreasing function. Since
t'3(0) is finite, there exists som@ such that’;(¢) < 0, for all ¢ > Q. By Relation (5), the termination time of the
algorithm is less thatf;. Therefore, whelg > @, the upper limit for the termination time is negative, which means

that the algorithm never stops. Thus the valgésr which the algorithm terminates are bounded again and we are in

the case covered by constant buffer size. |
3.2 Extending the Upper Bound on the Running Time

In the previous section we established an upper bound on the running time only for proving the complexity of sorting d-
algorithms. In this section, we analyze this bound. We begin by considering sorting d-algorithms, and then generalize

our results for other d-algorithms.

2This notation was chosen in order to be consistent with the notation from [5]. Thedenotes an upper bound on the running time. Obviously,
Relation (5) also defines an upper bound.



First, note that a side consequence of the proof of Theorem 3.2 is that the best value for the buiffés Hiee
minimal possible, i.e., 1, becausg is a decreasing function with respectgoln other words, there is no reason to
buffer data; it is better to insert each arrived datum in linear time. Hence, we will consider. Second, the time
required to insert one element € 1) into the already sorted sequenceilisfor some constant The expression for
t; becomes in this cas§, = ;757 — 1o

We have considered = 1. This implies that the produetg is larger than 1, and the existence of a limit on the

running time in this case was established in [5]. More interesting is the situation Where/2, for o5 < 1. Under

these conditions, no limit on the running time is known. We now study this case.

Theorem 3.3 For the polynomial data arrival law given by Relation (1), if a sorting d-algorithm terminates, then its

running time is upper bounded by a constdhthat does not depend on

Proof. We have the restriction = 1 for easier calculations. The timé& after which a new datum arrives is
given byl = kn7((t + dt)® — t%), for some moment. That is, (¢t + dt)? — t? = 1/kn”. On the other hand,
Relation (4) in the general case becormes> qlogq + n + kn? (t° — q/kn?). From these two relations,/kn" >

(q(logq — 1) +n + kn"t? + )8 — 7. In particular, fory = 1,

1
—> (q(logq — 1) 4+ n + knt? + )% — P, (6)
The complexity of the sorting algorithm &(N?) by Theorem 3.2. That s, foy = 1,n = t'/2/c(1 + kt?). By

substituting this value in Relation (6) and manipulating the obtained expression,

% > b(t) x a(t). @)

wherea(t) = (q(log g— 1)+ 22 1) — % andb(t) = #1/2/(1+kt?). Then, 244 — %(1/2%(1/275)%),
and hence, fof < 1/2, ag—(tt) > 0. Thatis,b(t) is an increasing function. Analogousbyt) is an increasing function

as well:

1

t t71/2 t1/2 B—
dalt)  _ &4 ( + 1) (q(logq -1+ —+ t> — ptP~t
ot c c

\Y

1/2 B-1
I} (q(logq -1+ —+ t) — 1~ | [because¢'/2/c > 0]
c

> 0 [because(logq — 1) + t'/2/c > 0 for large enough].



Therefore,b(t) x a(t) is increasing. Moreover, it is easy to see that, fox 1/2, lim;_ b(t) = oo, and
lim;_,o a(t) > 0. Thereforelim; .o, b(t) x a(t) = oo for 3 < 1/2. For = 1/2, lim;—b(t) = 1/k, and, for
large enought, a(t) > t/® and thuslim;_...a(t) = co. Then againlim; .., b(t) x a(t) = oco. Sinceb(t) x a(t)
is an increasing function and its limit is infinite, there exists some fifiigeich thab(t) x a(t) > % for anyt > T.
Then, such & larger thanl” will contradict the necessary condition for algorithm termination given by Relation (7).
Hence T is an upper bound for the running time and this completes the proof. O

Note that the theorem implicitly gives an upper bound for the maximum amount of data which can be processed,
because this amount is given By = n + kn"t? and its upper bound is obviousty + kn"T%. We contradict by
Theorem 3.3 the results derived in [5], where it is claimed that such a bound does not exjst<ot.

In the case of sorting on a linear structure we found an upper bound on the running time for any data arrival law.

Sorting is not the only case in which such a bound exists though.

Theorem 3.4 For the polynomial data arrival law given by Relation (1), lebe any d-algorithm with time complexity

Q(N%), a > 1. If Aterminates, then its running time is upper bounded by a congtahat does not depend an

Proof. We consider only the cage< 1/a, because the limit has been already foundif@r> 1 [5]. Lete = a — 1,
¢ > 0. If the algorithm terminates at some finite timighenN' data have been processéd,= n + kn7t°. That is,
the time for processing one datum:iy“ /N = ¢N¢ for some positive constant Following the same idea as the one
used for deriving Relation (4), we obtaiih > c(n+ kn7t")¢, which is similar to Relation (4). Therefore, analogously
to the proof of Theorem 3.3, we obtain for= 1

qe $1/2

72 T ((e(n + knt?)* + )P — 7). (8)

The left-hand side of this relation is increasing, becase+ knt”)¢ > 0, and it is immediate that the limit of

the right-hand side is infinite. Hence, the lifitis derived in the same way as in the proof of Theorem 3.3. O

We now consider parallel d-algorithms. Recall tieis the number of processors in the parallel model. It is immediate

that the process described in Lemma 3.1 admits linear speedup. Indeed, getengents admits linear speedup [1]

(page 179), and inserting the buffer into the previously sorted sequence may be achieved by using an optimal merging
algorithm [1] (page 209). Thus, Relation (5) becomes in the paralleltcasB/(kn")? +q(1 —log q) /knY —n/kn".

As expected, this relation is similar to Relation (5) for the sequential case. Therefore, all the above sequential results

hold for the parallel case as well. That is, the best valug ferl (buffering does not help), and a limf§ (P), similar



to t/y, for the running time can be foundj (P) = —t=+ — . Itis then easy to see that Theorem 3.4 holds for

cp(kn7)? knv*

the parallel case as well.

Theorem 3.5 For the polynomial data arrival law given by Relation (1), kktbe anyP-processor d-algorithm with
time complexitf2(N*), o > 1. If A terminates, then its running time is upper bounded by a con§tahat does not

depend om but depends or.

Proof. Itis enough to replace the first term from the right-hand side of Relation (8) in the proof of Theorem 3.4 by
P x t'/2 /(1 + kt?). The proof is then analogous, as this replacement introduces a multiplicative constant, which does
not change the sign of the derivative. As well, the appearanéedifes not change the limit. |

Finally, it is worth pointing out that a closer look at the proof of Proposition 2.1 given in [5] reveals that the

optimality of the d-algorithm in question is not used to establish the result. Therefore:

Theorem 3.6 Proposition 2.1 holds for any optimal or non-optimal d-algorithm with polynomial running time.
3.3 Using Another Data Arrival Law

Up to this moment, we have considered a polynomial data arrival law for the sorting problem, but we expect similar
results for other expressions. As an example, we consider here a totally differed¥ {ayw= q(n) + q(n)[t/r(n)],

for some fixedh, whereg, r : N — N. In plain English, data arrive in bundles @fr) elements each(n) time units.

This law is interesting because it extends the analysis of d-algorithms to non-continuous functions. For such an arrival
law, we first note that the minimum value for the size of the bufferg(n). Indeedg(n) data arrive together, and all

of them must be temporarily stored into some buffer until they are inserted into the sorted sequence. Second, the time
intervaldt between two data arrivalsign). By the same method used to obtéjnwe havedt > glog g+ N(t —t,).

But t, is null (since the whole bundle of data arrives at once)@rdq(n). Hence, since sorting and merging admit

linear speedup, the limits for the running time of the sequential and parallebcessor algorithms are given by:

lt/rn)] < ;‘Eg—mmgq(n))
lt/r(n)] < P;Eguﬂogq(n))

The two relations above are very similar to the ones obtained for the polynomial arrival law. Therefore, a form of

Theorems 3.4, 3.5, and 3.6 holds.



4 Conclusions

In our study of data-accumulating algorithms for sorting, we have taken a different approach than the one in [5]: we
first obtained a bound for the running time and, based on this result, we were able to characterize sorting d-algorithms
in terms of complexity. This bound also helped us find the optimal size of the input buffer. Note that a sorting
(d-)algorithm updates the data structure in a time interval that depends on the number of already processed input data.
This is the reason for which the upper bound on the running tiexists. Therefore, we expected similar upper
bounds for other problems with this property, such as the construction of search trees (problems 3 and 4 in [5]). Our
expectations were justified as shown in Theorems 3.4 and 3.5.

Considering a data arrival law other than the polynomial one, we found that properties of sorting d-algorithms do
not change significantly. Based on this, we conjecture that the general properties of such algorithms hold for any type
of data arrival law.

Theorems 3.4 and 3.5 are the main results of this paper. They prove the existence of an upper bound on the running
time for a large class of algorithms. It has been claimed [5] that the existence of such a limit dependswanubth
B. That is, it depends on both the complexity of the d-algorithm and the data arrival law. We have shown that, in
fact, the existence of such a bound depends only on the complexity of the d-algorithm. This is a serious limitation
of d-algorithms. It is, however, consistent with the results in [3], where we conjecture that problems solvable in real
time are included NLOGSPACE. Indeed, Theorems 3.4 and 3.5 restricts (successful) d-algorithms so that their static

counterparts fall into this class.
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