
On the Computational Complexity of
Context-Free Parallel Communicating Grammar

Systems1

Stefan Bruda

Romanian Academy of Sciences
Research Institute for Artificial Intelligence

13 Calea 13 Septembrie
Bucharest 050711, Romania
Email: bruda@racai.ro

Abstract. In this paper we investigate the computational complexity
for Parallel Communicating Grammar Systems (PCGSs) whose com-
ponents are context-free grammars. We show that languages gener-
ated by non-returning context-free PCGSs can be recognized by O(n)
space-bounded Turing machines. Also we state a sufficient condition
for linear space complexity of returning context-free PCGSs. Based
on this complexity characterization we also investigate the generative
power of context-free PCGSs with respect to context-sensitive PCGSs
and context-sensitive grammars.

1 Introduction

Parallel Communicating Grammar Systems (PCGSs) have been introduced as a
language-theoretic treatment of multiagent systems [4]. A PCGS consists of several
components (grammars) which work parallelly, in a synchronized manner. This is
done according to the communicating protocol in which one grammar (component)
may query strings generated by others and several components may make queries at
the same time [4]. Formal definitions will be review in the next section. Because of
the synchronization and communication facilities, PCGSs whose components are of
a certain type are more powerful than a single Chomsky grammar of the same type
[1, 4].

The study of computational complexity of PCGS is a stand alone problem. It
is also a feasible approach toward the generative power of PCGSs. By proving the
upper-bound or lower-bound complexity for PCGSs of a certain type, it is possible
to find out the relationship between the generative power of such PCGSs and that
of other generative devices.

1in G. Păun and A. Salomaa (eds.) New Trends in Formal Languages, Springer Lecture Notes
in Computer Science 1218, 1997, pp. 256–266

1

In this paper, the study of the computational complexity of context-free PCGSs
is based on space-bounded Turing machines. We will show that languages generated
by non-returning context-free PCGSs can be recognized by nondeterministic Turing
machines using O(|w|) tape cells for each input instance w. This result is obtained for
both centralized and non-centralized non-returning PCGSs and a sufficient condition
for the returning case was stated. Starting from these results, we will analyze
the generative power of context-free PCGSs according to the generative power of
context-sensitive grammars and context-sensitive PCGSs.

The present paper is organized as follows. The next section reviews some funda-
mental concepts, the third section presents the computational complexity of context-
free PCGSs and the fourth section discusses the generative power of this kind of
PCGSs. We present some final remarks and further studies in the last section.

2 Fundamentals

In this section, we will briefly review the notion of PCGS and that of space-bounded
Turing computation. More detailed descriptions can be found in [1] and [2] respec-
tively. We also assume that the reader is familiar with basic concepts in formal
language and computational complexity theories.

We will use the notations from [1]. For x ∈ V ∗, and a set U , |x|U denotes
the number of occurrences of elements of U in x. We also define ‖U‖ to be the
cardinality of set U . The null string is denoted by λ.

The next definitions are also conforming to [1].

Definition 2.1 Let n ≥ 1 be a natural number. A PCGS with n components is a
(n+ 3)-tuple

Γ = (N,K, T,G1, ..., Gn)
where N is the set of nonterminals, T is a terminal alphabet, K = {Q1, Q2, ..., Qn}
(the sets N , K and T are mutually disjoint) and

Gi = (N ∪K, T, Pi, Si), 1 ≤ i ≤ n,
are Chomsky grammars. Let VΓ = N ∪K ∪ T .

The grammars Gi, 1 ≤ i ≤ n, are the components of the system and the elements
of K are called query symbols; their indices points to G1, ..., Gn respectively.

The derivation in a PCGS id defined as follows.

Definition 2.2 Given a PCGS Γ = (N,K, T,G1, ..., Gn) as in the definition above,
for the tuples (x1, x2, ..., xn), (y1, y2, ..., yn), xi, yi ∈ V ∗

Γ , 1 ≤ i ≤ n, we write
(x1, x2, ..., xn) ⇒ (y1, y2, ..., yn) if one of the following cases holds:

1. |xi|K = 0, 1 ≤ i ≤ n, and for all i, 1 ≤ i ≤ n, we have xi ⇒ yi in Gi or
xi ∈ T ∗ and xi = yi;

2. there is i, 1 ≤ i ≤ n, such that |xi|K > 0 and for each such i let xi =
z1Qi1z2Qi2 ...ztQitzt+1, t ≥ 1; in that case, for zj ∈ V ∗

Γ , |zj |K = 0, 1 ≤ j ≤ t + 1, if

2

∣

∣

∣xij

∣

∣

∣

K
= 0, 1 ≤ j ≤ t, then yi = z1xi1z2xi2 ...ztxitzt+1 [and yij = Sij , 1 ≤ j ≤ t]. If

exists j, 1 ≤ j ≤ t, and
∣

∣

∣xij

∣

∣

∣

K
6= 0 then yi = xi. For all i, 1 ≤ i ≤ n, for which yi

was not specified above we have yi = xi.

The first case is called a componentwise derivation step and the second a commu-
nication step. Note that communications have priority over componentwise deriva-
tions. The query symbol to which a string has been communicated is called satisfied.

A tuple (x1, x2, ..., xn) is called a configuration of the system. We will call xi a
component of the configuration or only a component if the reference to the configu-
ration is understood from the context.

Note that rules Qj → α are never used, so we can assume that there are no such
rules [1].

The derivation in a PCGS is blocked if no rewriting rule can be applied to a
nonterminal symbol in any component or circular queries appear (this happens when
Gi1 introduces Qi2 , Gi2 introduces Qi3 , ..., Gik−1

introduces Qik and Gik introduces
Qi1 . In this case no rewriting step is applicable, because the communication has
priority, but also no communication steps are applicable).

Definition 2.3 The language generated by a PCGS Γ is:
L(Γ) = {x ∈ T ∗|(S1, S2, ..., Sn) ⇒

∗ (x, α2, ..., αn), αi ∈ V ∗
Γ , 2 ≤ i ≤ n}.

The derivation starts from the tuple of axioms (S1, S2, ..., Sn). A number of
rewriting and/or communication steps are performed until G1 produces a terminal
string. Note that L(Γ) contains only strings generated by the first component, with
no care about the strings generated by the others, which may contain query symbols.

Definition 2.4 Let Γ = (N,K, T,G1, ..., Gn) be a PCGS. If only G1 is allowed to
introduce query symbols, then Γ is called centralized. The unrestricted case is called
non-centralized.

Definition 2.5 A PCGS is called returning (to the axiom) if, after communication,
a component which has communicated a string resumes the work from its axiom as
described by sentence [and yij = Sij , 1 ≤ j ≤ t] in the second case of the definition
2.2. A PCGS is called non-returning if components continue working using the
current string after a query (i.e. the sentence above is erased from the definition).

Notations: A centralized, returning PCGS with components of type X is de-
noted by PC∗X . For the centralized case we add a C and for non-returning case a
N (see [1] for details). We obtain the classes PC, CPC, NPC, NCPC.

The notion of the coverability tree of a non-returning PCGS has been introduced
in [5]. We will summarize here this notion and its relevant properties for this paper.

The set of natural numbers IN is extended by a special symbol ω to the set
INω = IN ∪ {ω}. The operations ”+”, ”-”, ”.” and the relation ”≤” over IN are

3

extended to INω by ω + ω = ω + n = n + ω = ω, ω − n = ω, ω.n = n.ω = ω, n ≤ ω

for all n ∈ IN .
The set N (of nonterminals) of a PCGS Γ = (N,K, T,G1, ..., Gn) is ordered:

A1, ..., An+m, m ≥ 0, such that A1 = S1, ..., An = Sn.
Let w = (w1, ..., wn) be a configuration of Γ. Mw denotes the vector
Mw = ((|w1|X1

, ..., |w1|X2n+m
), ..., (|wn|X1

, ..., |wn|X2n+m
)),

where Xi = Ai, 1 ≤ i ≤ n + m, Xn+m+j = Qj , 1 ≤ j ≤ n. Mw(i, j) denotes the
element |wi|Xj

.

We can assume [5] that for each component of Γ there is a phantom production
which does not change the string and which can be applied only to terminal strings in
the synchronized case. So, a rewriting step in Γ is a n-tuple t = (r1, ..., rn), where ri
denotes either a production in Gi or the phantom production, for all 1 ≤ i ≤ n. For
uniformity, we say that communication steps are produced by a special transition
Λ. The set of all t = (r1, ..., rn) as above is denoted by TR(Γ), Λ ∈ TR(Γ). A
transition t is enabled in a certain configuration if the corresponding rewriting or
communication step can be applied in that configuration.

If a transition t is enabled for a configuration w of Γ then we write Mw[t >Γ; if,
after t is performed, the new configuration is w′ then we write Mw[t >Γ Mw′ .

Let A and B be two arbitrary sets. T (V,E, l1, l2) is an (A,B)-labeled tree if
(V,E) is a tree and l1 : V → A is the node labelling function and l2 : E → B is the
edge labelling function. We denote by dT (v1, v2) the set of all nodes on the path
from v1 to v2.

For each PCGS Γ there is a ((IN2n+m
ω)n, TR(Γ))-labeled tree called the coverabil-

ity tree for Γ defined as follow [5].

Definition 2.6 Let Γ = (N,K, T,G1, ..., Gn) be a PCGS. A ((IN2n+m
ω)n, TR(Γ))-

labeled tree, T = (V,E, l1, l2), is called a coverability tree of Γ if the following
hold:

1. the root, denoted by v0, is labeled by Mx0
, where x0 = (S1, ..., Sn) (the initial

configuration);

2. for any node v ∈ V the number of outgoing edges |v+| is

• 0, if either there is not any transition enabled at l1(v) or there is v′ ∈
dT (v0, v) such that v 6= v′ and l1(v) = l1(v

′)

• the number of transitions enabled al l1(v) otherwise.

3. for any v ∈ V with |v+| > 0 and any transition t which is enabled at l1(v)
there is a node v’ such that:

(a) (v, v′) ∈ E,

(b) l2(v, v
′) = t,

(c) l1(v
′) is given by

4

• let M be such that l1(v)[t >Γ M ;

• if M contains queries then l1(v
′) = M else

if exists v∗ ∈ dT (v0, v) such that l1(v
∗) ≤ M and l1(v

∗)(i, j) < M(i, j)
then l1(v

′)(i, j) = ω else
l1(v

′)(i, j) = M(i, j),
for all i, j, 1 ≤ i ≤ n and 1 ≤ j ≤ 2n+m.

For non-returning synchronized PCGSs such tree is always finite and can be
effectively constructed (see [5] for demonstrations and details). The coverability
tree for a PCGS Γ is denoted by T (Γ).

From the construction of the coverability tree follows that if, for some config-
uration w, Mw(i, j) = ω then, in that configuration, the number of occurrences of
Xj in the i-th component can be made arbitrarily large [5]. This implies that if
Mw(i, j) = ω then Xj cannot be totally removed by any successive derivation steps
from xi, i.e. such nonterminals cannot block the derivation.

Definition 2.7 Given a Turing machine M and an input string x ∈ T ∗, the working
space of M on x is the length of work tapes for M to halt on x. More generally, let
S be any function from IN to IN ; let L ⊆ T ∗. We say that M decides 2 L in space S
provided that M decides L and uses at most S(n) tape cells on any input of length
n in T ∗. If M is a nondeterministic Turing machine we write L ∈ NSPACE(S(n)).
We say also that M is a S(n) space-bounded Turing machine.

For the rate of growth of a function we have the following definition [2]:

Definition 2.8 Let f and g be natural functions. We write f = O(g) iff there is a
constant c > 0 and an integer n0 such that f(n) ≤ c.g(n) for all n ≥ n0.

3 The Complexity of Context-Free PCGS

In this section we will study the computational complexity of PCGSs whose com-
ponents are context-free grammars. We suppose there are not λ-productions. A
discussion on λ-productions will be done at the end of this section.

Definition 3.1 During a derivation process in a PCGS, a component of the current
configuration xi is called non-direct-significant for the recognizing of the string w if

(i) either i 6= 1 and xi is not queried anymore or
(ii) i=1 and the derivation from x1 to w in G1 cannot end successfully unless x1

is reduced to the axiom sometime in the future or
(iii) i 6= 1 and xi is queried by xj , j 6= i, and xj become non-direct-significant.
All the others components are called direct-significant. Any component which is

reduced to the axiom becomes direct-significant.

2A Turing machine M decides a language L if, for any input string w, M halts and writes on
its tape a specified symbol Y if w ∈ L or another symbol N if w 6∈ L; If M writes Y we say it
accepts the string, otherwise it rejects the input [2]

5

In other words, a non-direct-significant component of a PCGS cannot directly
participate at a successful derivation. It can only produce lateral effects (by queries
which can modify other components) or block the derivation (by circular queries or
by its nonterminals for which there are no applicable rewriting rules).

This definition introduces the class of components for which the structure is
irrelevant for the derivation. Therefore, these components can be erased if the
information relevant for lateral effects is kept.

Starting from this definition we can consider the following lemmas.

Lemma 3.1 Let Γ = (N,K, T,G1, ..., Gn) be a centralized PCGS (Γ ∈ CPC∗CF ∪
NCPC∗CF) and w ∈ T ∗ a string. Let also (x1, ..., xn) be a configuration of the sys-
tem. Then, if the length of a component xi becomes greater than |w|, that component
becomes non-direct-significant for the recognizing of w.

Proof. We will consider two situations:
(i) let i = 1. If |x1|K = 0, then x1 will be rewrited using the rules of G1. But

these are context-free rules and there are not λ-productions, so the length of x1

does not decrease. If |x1|K 6= 0, a communication step will be performed. But the
communication step does not reduce the length of the component because there are
not null components to be queried (there are not λ-productions). So, the length of
x1 does not decrease anymore and this leads to the rejection of w because the first
component is not queried (we have a centralized PCGS) so it can not be reduced to
the axiom. Therefore x1 is non-direct-significant according to the definition 3.1.

(ii) for i ≥ 2, only the first component can introduce query symbols, so if xi

is queried by the first component (if xi is not queried then it is obviously non-
direct-significant), the length of x1 becomes greater than |w|, therefore x1 becomes
non-direct-significant (according to the point (i)). So xi is non-direct-significant.
✷

Lemma 3.2 Let Γ = (N,K, T,G1, ..., Gn) be a non-centralized non-returning PCGS
(Γ ∈ NPC∗CF) and w ∈ T ∗ a string. Let also (x1, ..., xn) be a configuration of
the system. Then, if the length of a component xi becomes greater than |w|, that
component becomes non-direct-significant for the recognizing of w.

Proof. The proof is basically similar to the proof of the lemma 3.1. The case i = 1
has the same proof as the case (i) in the proof above, because x1 can not decrease
even if it is queried (the system is non-returning).

For i ≥ 2, either the component xi is never queried therefore it is non-direct-
significant, or it is queried by the first component and we have the same situation as
in the case (ii) of the proof above, or it is queried by another component xj , j 6= i,
j 6= 1, which become in that way longer than w and also can not decrease. ✷

6

Lemma 3.3 Let Γ = (N,K, T,G1, ..., Gn) be a non-centralized returning PCGS
(Γ ∈ PC∗CF) and w ∈ T ∗ a string. Let also (x1, ..., xn) be a configuration of
the system. Then, if the length of a component xi becomes greater than |w|, that
component becomes non-direct-significant for the recognizing of w.

Proof. We have the same proof as for lemma 3.2 with the mention that, if
a component is queried, it is reduced to the axiom and then it become direct-
significant. But this situation is allowed by the definition (a non-direct-significant
component can become direct-significant iff it is reduced to the axiom). ✷

Using the lemmas above, the complexity of context-free PCGS can be studied.
We first consider the non-returning case.

Lemma 3.4 Let Γ be a non-returning PCGS with n context-free components (n ≥
1). Then there is a Turing machine M that recognizes the language L(Γ) using at
most O(|w|) amount of work tape space for each input instance w.

Proof. Let Γ = (N,K, T,G1, ..., Gn) be a non-returning PCGS, where Gi =
(N ∪ K, T, Pi, Si), 1 ≤ i ≤ n, are context-free grammars. We will construct the
nondeterministic Turing machine M which recognizes L(Γ).

M will be a standard Turing machine, with a work tape equipped with a
read/write-head. The alphabet of the tape of M is N ∪ K ∪ T ∪ {@, ω},
@, ω 6∈ N ∪ K ∪ T . Given an input string w ∈ T ∗, M will simulate step by
step the derivation of w by Γ. But first M should compute the coverability tree
T (Γ) of Γ. Note that this computation can be done [5] and its space complex-
ity is not w-dependent, so it does not modify the space complexity of the whole
computation if this complexity is a function of w. Then M find the number
mmax = max{l1(v)(i, j)|1 ≤ i ≤ n, 1 ≤ j ≤ 2n +m, l1(v)(i, j) 6= ω}. After that, M
erases the coverability tree and keeps on its tape the number mmax

3.
The simulation of the derivation is done according to the definition 2.2. There-

fore, there are two types of derivation steps to simulate: the componentwise rewriting
and the communication. M will keep on its tape the current configuration and will
work on it as follows:

(i) If |xi|K = 0 for all i, 1 ≤ i ≤ n, M simulate rewriting for each component xi,
1 ≤ i ≤ n. If |xi|N = 0, then xi remains unchanged. Otherwise, M nondetermin-
isticaly selects a rule from the rule set Pi and rewrites xi according to this rule. If
there are some i for which such rule does not exist, M rejects the input and halts.

If |xi| > |w| then, according with lemma 3.1 (if we have a centralized PCGS) or
3.2 (if the system is non-centralized), xi become non-direct-significant. Therefore
its structure is irrelevant and it will be replaced by the string

3Or, mmax being a property of Γ and not of w, it can be considered a parameter ofM . Therefore
it should not be computed (and so M does not need to compute T (Γ)) but it should be on the
tape at the beginning of the computation

7

@t1T1...tjTjq1Q1...qkQk (1)

where @ is a special symbol (@ 6∈ N∪T ∪K), T1, ..., Tj are the distinct nonterminals
in xi and Q1, ..., Qk are the distinct query symbols in xi. th (1 ≤ h ≤ j) is either
the number of occurrences of the nonterminal Th in xi if these occurrences are few
than mmax or ω otherwise. Also qh (1 ≤ h ≤ k) is either the number of occurrences
of the query symbol Qh in xi if these occurrences are few than mmax or ω otherwise.

Note than if the number of occurrences of X in xi ,X ∈ K ∪N , becomes greater
than mmax, then l1(v) must contain ω in the position corresponding to xi and X

(where v is the node in T (Γ) corresponding to the current configuration), so the
number of occurrences of X cannot decrease (in fact it can grow indefinitely), there-
fore X cannot be eliminated from xi, so it is not necessary to count its occurrences
in xi anymore.

We have to explain now how the rewriting works on strings of the form (1). Let
the rewriting rule be

A → α1A1α2A2...αmAmαm+1

where A ∈ N , A1, ..., Am ∈ N ∪ K and α1, ..., αm ∈ T ∗. Then, there is Tr = A,
1 ≤ r ≤ j, (if not, the rule is not applicable) and M increases the counter for each
nonterminals or query symbol Aj (if that counter is ω then it remains unchanged),
1 ≤ j ≤ m, in xi; if that counter becomes greater than mmax,then it is replaced by
ω and if Aj does not already exists in xi, then a new pair 1Ajis added to xi. Finally,
M decrements the counter of A, excepting when this counter is ω, when it remains
unchanged. If that counter becomes zero, both this counter and A are erased from
xi.

The reason for keeping nonterminals in non-direct-significant components is that
these nonterminals can introduce query symbols when a rewriting is performed. Also
the absence of a nonterminal can block the derivation.

(ii) If there are query symbols in the current configuration, then M simulates
communication steps. If there are circular queries, M rejects the input and halts.
Otherwise, M nondeterministicaly selects a component xi for which Qj , 1 ≤ j ≤ q,
are all the query symbols and |xj |K = 0, 1 ≤ j ≤ q. M sequentially replaces Qj

by xj . If either the current xj is of the form (1) or, after replacement, xi becomes
longer than |w|, then xi becomes non-direct-significant, so it will be replaced by a
string of the form (1).

This communication step is repeatedly performed until there are no query sym-
bols in the current configuration.

M repeats steps of type (i) and (ii) until:
1. either x1 and w are identical or
2. the first symbol of x1 is @ or
3. the number of iterations exceeds a fixed positive number c.
In the first case M accepts the input and halts, in the other two cases M rejects

w and halts.

8

Let us count the amount of work space used by M during the derivation. If the
length of a component xi is less than |w| then this component is kept on the tape
as it is, so less than |w| tape cells are necessary in order to keep it. If a component
has a length greater than |w|, it become of the form (1). Because we have a fixed
finite number t of nonterminals for a given PCGS and exactly n query symbols,
the length of such component on the tape is independent of |w| and is less than
1 + logmmax(t + n), where t = ‖N‖.

A communication step may use temporary an amount of tape space double than
the space used by a single component (e.g. a string of length |w| is queried by
another string of length |w|; before the reduction to form (1) we have to use 2|w|
tape cells).

Therefore, the number of cells used by a component is less than
2max(|w|, 1 + logmmax(t+ n)).
We have n components and we need some extra space on the tape to keep the

rules of the system and mmax. So, the space used by M is upper-bounded by
2n.max(|w|, 1 + logmmax(t+ n)) + pl + logmmax.
But t, n and mmax are not |w|-dependent so, conforming to the definition 2.8 of

the rate of growth of the functions, the space used is
O(2n|w|+ pl + logmmax).
Finally we have to show that the fixed integer c we claimed before exists. But

this is immediate from the following property of space-bounded Turing machines [2]:
NSPACE(S) ⊆ ∪{NTIME(dS)|d ≥ 1}
If the number of the iterations of M becomes greater than c, M have repeated

some configurations, so M should reject the input because, if the input is in L(Γ),
it would have been accepted before the configuration is repeated at the second time
(this happens because of the nondeterminism of M). ✷

The same result cannot be obtained for returning PCGS unless there is a limit
for the number of significant occurrences for each nonterminal (i.e. if the number
of occurrences of any nonterminal in any component xi of the configuration ex-
ceeds that limit, then that nonterminal cannot be eliminated from xi by any further
derivation). We will call this limit a limit of significant occurrences.

Note that this limit was found for the non-returning case by constructing and
inspecting the coverability tree of the system in discussion. This is possible be-
cause this tree can be effectively constructed for the non-returning case [5]. The
construction of the coverability tree is not necessary effective for returning PCGSs.

Lemma 3.5 Let Γ be a returning centralized PCGS with n context-free components,
(n ≥ 1). Then there is a Turing machine M that recognizes the language L(Γ) using
at most O(|w|) amount of work tape space for each input instance w if there is a
finite limit mmax = m(|w|) of significant occurrences for any nonterminal, where
m : IN → IN , m = O(dn), d > 1.

Proof. Let Γ = (N,K, T,G1, ..., Gn) be a non-returning PCGS, where Gi =
(N ∪ K, T, Pi, Si), 1 ≤ i ≤ n, are context-free grammars. We will construct the

9

nondeterministic Turing machine M which recognizes L(Γ).
M will be a standard Turing machine, with a work tape equipped with a

read/write-head. The alphabet of the tape of M is N ∪K ∪ T ∪ {@, ω, }. Given an
input string w ∈ T ∗, M will simulate step by step the derivation of w by Γ. The
construction of M is basically similar to the one used in the proof of lemma 3.4
excepting that M does not compute the coverability tree of Γ.

The reference to lemma 3.2 from the above demonstration should be replaced in
the current demonstration by the reference to lemma 3.3.

Differently from the non-returning case, when a component xi is queried, M has
to simulate the returning of xi to the axiom. This is done by replacing xi by the
axiom of its grammar (Si).

Note that this replacement does not depend of the form of xi so the processing of
strings longer than |w| is correct, i.e. the rewriting of such components in the form
(1) does not lose any necessary information. Moreover, a number of occurrences (of
any terminal X in any component of the configuration xi) greater than mmax implies
that X cannot be eliminated from xi, as in the proof of lemma 3.4. Therefore, the
non-direct-significant components are correctly stored.

M halts if
1. x1 is identical with w; in this case M accepts the input or
2. no derivation steps are available (there are not rules applicable for some

components or there are circular queries) and M rejects the input or
3. the number of iterations exceeds a fixed positive number (similar with the

one in lemma 3.4); in this case also M rejects the input.
Even if the circularity of a PCGS is not a decidable problem for the returning

case, M halts in any situation because of the limit c of its possible configurations.
M does not decide the circularity of the system at the beginning of the derivation
(which can be an undecidable problem) but it halts when any circularity appears.

Finally, the space used by M is, analogous with the proof of lemma 3.4,
O(2n.max(|w|, 1 + logmmax(t+ n)) + pl + logmmax) =
= O(2n.max(|w|, 1 + logm(|w|)(t+ n)) + pl + logmmax) =
= O(2n.max(|w|, 1 + log d|w|)(t+ n)) + pl + log d|w|) =
= O(max(|w|, |w|) + |w|) = O(|w|)

(because mmax = O(2|w|)), and a limit c for the possible configurations of the tape
can be found. ✷

By lemmas 3.4 and 3.5 we have

Theorem 3.1 L(X∗CF) ⊆ NSPACE(n), X ∈ {NPC,NCPC} and there are no
λ-productions.

Theorem 3.2 L(X∗CF) ⊆ NSPACE(n) (X ∈ {PC,CPC} and there are no λ-
productions) if a limit in O(d|w|), d > 1, of significant occurrences exists.

Also we can consider a subclass of context-free PCGS with λ-productions. This
subclass is very restrictive but we can consider in this way PCGSs which can generate
the null string.

10

Definition 3.2 Γ ∈ X∗CFλ∗ , X ∈ {PC,NPC,CPC,NCPC}, if Γ ∈ X∗CF , X as
above, and either Γ does not contain λ-productions or

(i) Pi, i > 1, do not contain λ-productions and
(ii) P1 contains only the three productions S1 → λ, S1 → S1 and S1 → Q2 and
(iii) x1 is not queried anymore (i.e. Q1 does not appear in the right side of any

production of the system).

Note than the subclasses introduced by this definition are similar with usual
context-free grammars in which λ-productions are eliminated [2].

We have the following theorem.

Theorem 3.3 L(X∗CFλ∗) ⊆ NSPACE(n), X ∈ {NPC,NCPC}.

Proof. Let Γ = (N,K, T,G1, ..., Gn). We will construct Turing machines which
simulate the derivation of an input string w. Such machine M works as follows:

If w is a null string, which belongs to the language in discussion, M ac-
cepts it and halts. Otherwise, M continues the derivation for the system Γ′ =
(N,K, T,G2, ..., Gn) as the machine for the appropriate class X∗CF does. Note
that, by erasing the first component, the system becomes without λ-productions,
so the machine works properly. Also, the first component in Γ only waits for the
second component to obtain a terminal string and queries it. ✷

Corollary 3.1 L(X∗CFλ∗) ⊆ NSPACE(n), X ∈ {PC,CPC} if a limit in O(d|w|),
d > 1, of significant occurrences exists.

4 Generative Power of Context-Free PCGS

In this section we will analyze the generative power of context-free PCGS with
respect to context-sensitive grammars but also to other types of PCGSs.

Theorem 4.1 L(X∗CF) ⊆ L(CS), X ∈ {NPC,NCPC}.

Proof. It has been proved that the class of languages recognized by linear space-
bounded Turing machines is identical to the class of context-sensitive languages [2].
This and theorem 3.1 imply that L(CS) includes L(X∗CF). ✷

Corollary 4.1 L(X∗CF) ⊆ L(Y∗CS), X ∈ {NPC,NCPC}, Y ∈
{NPC,NCPC}.

We have proved so that any language generated by non-returning context-free
PCGSs is context-sensitive. An open problem is if there are context-sensitive lan-
guages which can not be generated by such PCGS, i.e. if the inclusion in the theorem
4.1 is proper.

The above results are obtained for the classes X∗CF (X ∈ {NPC,NCPC}) but
they can be extended for X ∈ {PC,CPC} if a limit of significant occurrences as
above exists. Also these results are true for the classes X∗CFλ∗ (X as above).

11

5 Conclusions

In this paper we have tried to investigate the computational complexity of context-
free PCGSs. We have proved the linear space complexity of languages generated
by non-returning context-free PCGS, proving so that these languages are context-
sensitive. Also, we have found some results concerning returning systems. Finding
the limit of significant occurrences we mentioned above is an open problem which
we are working on.

Systems which contains λ-productions were not considered and this is a possible
extension of this study. We think a feasible approach to this problem consists in
finding some transformations which eliminates λ-productions (in the same manner
as for context-free grammars [2]) even if there are synchronization problems. The
theorem 3.3 is a support for this approach. We believe that these systems have
linear space complexity too.

Also a possible extension of this study is the investigation of time-bounded com-
plexity of context-free PCGSs. We intend to pursue further studies on these issues.

References

[1] E. Csuhaj-Varjú, J. Dassow, J. Kelemen, Gh. Păun, Grammar Systems. A
Grammatical Approach to Distribution and Cooperation, Gordon and Breach,
London, 1994;

[2] H. R. Lewis, C. H. Papadimitriou, Elements of the Theory of Computation,
Prentice-Hall, 1981;

[3] L. Cai, The Computational Complexity of Linear PCGS, Computer and AI, 15,
2 - 3 (1996), 199 - 210;

[4] Gh. Păun, L. Sântean, PCGS: The Regular Case, Ann. Univ. Buc., Matem.
Inform. Series, 38, 2(1989), 55 - 63;

[5] F. L. Ţiplea, O. Procopiuc, C. M. Procopiuc, C. Ene, On the Power and Com-
plexity of PCGS, Artificial Life: Grammatical Models, Black Sea University
Press, Bucharest, 1995.

12

