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Abstract

A correcting algorithm is one that receives an endless stream of corrections to its initial input data and
terminates when all the corrections received have been taken into account. We give a characterization
of correcting algorithms based on the theory of data—accumulating algorithms. In particular, it is shown
that any correcting algorithm exhibits superunitary behavior in a parallel computation setting if and only
if the static counterpart of that correcting algorithm manifests a strictly superunitary speedup. Since
both classes of correcting and data—accumulating algorithms are included in the more general class of
real—time algorithms, we show in fact that many problems from this class manifest superunitary behavior.
Moreover, we give an example of a real-time parallel computation that pertains to neither of the two
classes studied (namely, correcting and data—accumulating algorithms), but still manifests superunitary
behavior.

Because of the aforementioned results, the usual measures of performance for parallel algorithms (that
is, speedup and efficiency) lose much of their ability to convey effectively the nature of the phenomenon
taking place in the real-time case. We propose therefore a more expressive measure that captures all the
relevant parameters of the computation. Our proposal is made in terms of a graphical representation.
We state as an open problem the investigation of such a measure, including finding an analytical form
for it.

*This research was supported by the Natural Sciences and Engineering Research Council of Canada.



1 Introduction

A well known result concerning the limits of parallel computation, called the speedup theorem, states that
when two or more processors are applied to solve a given computational problem, the decrease in running
time is at most proportional to the increase in the number of processors [4, 13]. Since, according to this
result, the ratio of the speedup achieved to the number of processors used is at most 1, the behavior of any
parallel algorithm is at most unitary. By contrast, if a parallel algorithm were to be found which provides
a speedup larger than the number of processors it uses, then this algorithm would contradict the speedup
theorem and would be said to exhibit superunitary behavior.

One of the principal shortcomings of the speedup theorem is that it is stated for, and applies solely to, a
conventional computing environment, where all the input is available at the beginning of the computation,
and no restrictions are imposed on the completion time of the algorithm. In particular, such a conventional
environment does not assume any real-time constraints. Typically, such constraints are divided into two
main classes: (i) the jobs performed by an algorithm have real-time deadlines, and (ii) the entire input set
is not available initially, so that more data arrive in real-time during the computation.

The first of these classes was considered from the point of view of the parallel computation in [1, 2],
where it is shown that such constraints can lead to superunitary behavior. The study of the second class
of constraints began in [8], where the class of data—accumulating algorithms (or d-algorithms for short) is
introduced. In this paradigm, data that arrive during the computation are considered as an endless stream,
the algorithm terminating when all the currently arrived data have been processed. The study of d-algorithms
was continued in [5, 6, 9], where it is shown that such an algorithm manifests superunitary behavior if and
only if the parallel speedup for the static case is strictly larger than 1. Moreover, an interesting link between
real-time input and real-time deadlines was discovered in [5]: For each d-algorithm there is a finite deadline
(that is, if the running time of the algorithm exceeds some finite amount that does not depend on the shape
of the data arrival law, then that algorithm never terminates).

Two extensions of the d-algorithm class are proposed in [9]. The first extension concerns maintenance
algorithms (or m-algorithms). An m-algorithm is one that works on an endless, real-time, input stream,
such that its work is divided into stages of fixed time length. At the beginning of each stage, an m-algorithm
processes the data that arrived during the previous stage (updating some data structure), after which it
releases the control to another application, that performs some work on the updated data structure. The
analysis of m-algorithms can be easily performed once the theory of d-algorithms is established, as shown in
[9].

The second extension is given in [9] as the class of correcting algorithms (c-algorithms henceforth), where
the input data are available at the beginning of the computation, but there is an endless stream of corrections
to the initial input set. Again, a c-algorithm terminates when all the arrived corrections have been taken into
account. It is mentioned in [9] that the same approach can be used to study such algorithms as the one applied
to d-algorithms. Indeed, we start our paper by showing how a characterization of c-algorithms using the
already developed theory of d-algorithms is possible. More precisely, we show that, given some c-algorithm,
its characteristics (that is, running time, complexity, parallel speedup) are identical to the characteristics of a
(hypothetical) d-algorithm. Therefore, c-algorithms have the same properties as d-algorithms. In particular,
they manifest superunitary behavior if and only if the static case offers even the slightest speedup (that is,
a speedup larger than 1).

We believe that there are many practical uses of c-algorithms, examples of which are presented in this
paper, namely, c-algorithms for algebraic computations and for graph processing. An interesting subclass
is also identified in which the process of updating the solution when a correction arrives is no faster than
rebuilding the solution from scratch. Note that one practical case in which the theory of c-algorithms may
prove very useful is the emerging area of mobile computing and heterogeneous networks [12, 15], where
the current methods for dealing with mobile hosts when routing packets (e.g. tunneling [15]) may lead to
congestion. Therefore, an alternative solution is to compute the routing tables on the fly [12], and the theory
of c-algorithms is handily available for the analysis of such routing algorithms.

Since the speedup can grow unbounded for parallel c-algorithms, and this growth depends on the arrival
law, the usual measures of performance (that is, speedup and efficiency) lose most of their ability to convey
effectively the nature of the phenomenon which occurs in this case. In fact, as we shall see, speedup and



efficiency become unfair measures, since the definition of running time varies from the static to the data—
accumulating model. Moreover, these measures of performance fail to take into consideration the parameters
of the real-time input arrival law. Hence, we propose a new and more expressive measure of performance,
in the form of a graphical representation. However, an open problem suggested by this paper is to find an
analytical form corresponding to the proposed measure, and to assess its effectiveness. We believe that such
a measure will shed a new light on the analysis of real-time parallel algorithms.

The paper is organized as follows. In section 2 the relevant concepts concerning the traditional limits
on the power of parallel algorithms are presented, along with a definition of the class of d-algorithms. In
section 3 we formally define the notion of a c-algorithm, and analyze this class in section 4. Two classes of
problems are described in section 5 that are important—both for practical and theoretical reasons—in the
context of our study of c-algorithms. Parallel computation in a general real-time environment is the subject
of section 6. A paradigm involving a set of objects in perpetual motion is discussed and a new measure of
performance for parallel real-time computations is proposed. Conclusions and open problems are offered in
section 7.

In the following, a proposition is a result proved elsewhere. Whenever possible, the name of the original
theorem is provided. The word “iff” stands for the phrase “if and only if”. For definiteness, we use
the Random Access Machine (RAM) and the COMBINING Concurrent-Read Concurrent-Write Parallel
Random Access Machine (CRCW PRAM), throughout the paper as our models of sequential and parallel
computation, respectively [1].

2 Preliminaries

The most common measure of the performance of a parallel algorithm is the speedup[l, 13]. Given a p;-
processor algorithm A, for some problem II, p; > 0, let A be the best known sequential algorithm that
solves II. Then, the speedup of A, is the ratio S(1,p1) = Tr(1)/Tu(p1), where Tri(x) is the running time
of the z-processor algorithm that solves II (A when x = 1). Note, however, that, using the above definition
of speedup, one cannot directly compare the performance of two parallel algorithms. Speedup is therefore
an absolute measure. This definition was extended to a relative measure in [2] where, given two parallel
algorithms A; and A, which use p; and ps processors, respectively, p; > p2 > 1, the speedup of A; over A,
is S(p2,p1) = Tu(p2)/Tr(p1). In the following we refer to the original definition each time when we write
S(1,p), and to the modified definition when we write S(p’,p), p' # 1. We also imply the original definition
when we refer to “speedup”, without any further clarifications.

Efficiency is usually defined as the ratio of the speedup over the number of processors, that is, E(1,p) =
S(1,p)/p [1, 13]. Henceforth we omit the first argument and denote the efficiency simply by E(p). However,
in some cases [2], efficiency is defined in a more general way: E(pi,ps) = % x B, where T7y is defined
as above.

In a conventional environment, the speedup (and hence the efficiency) of a parallel algorithm is bounded
by the following results [1, 4, 13].

Proposition 2.1 (Speedup Theorem [13]) S(1,p) < p or, equivalently, E(1,p) < 1. m|

Proposition 2.2 (Brent’s Theorem [4]) If a computation C can be performed in time t with q operations
and sufficiently many processors that perform arithmetic operations in unit time, then C' can be performed
in time t + (¢ — 1)/p with p such processors. ]

These two propositions state that, when more processors solve a given problem, the increase in perfor-
mance is at most proportional to the increase in the number of processors. However, both of these theorems
fail in a number of unconventional computational environments, as shown in [1, 2, 9]. Specifically, the bounds
that they set do not hold in such environments. Thus, for example, a speedup asymptotically larger than
p (that is, a superlinear speedup) is possible with p processors in certain real-time computations, indicating
that the speedup theorem is too pessimistic. Similarly, a ‘slowdown’ asymptotically larger than ¢/p (that is,
a superlinear slowdown) can be incurred, pointing to the fact that Brent’s theorem is too optimistic.



2.1 D-Algorithms

Since our study of c-algorithms relies heavily on the theory of d-algorithms, we summarize here the relevant

properties of the latter. The notion of d-algorithm was introduced in [8], and is further studied in [6, 9].
An algorithm for which the input data arrive while the computation is in progress, and the computation

terminates when all the currently arrived data have been treated, is called a d-algorithm. More precisely,

Definition 2.1 [6] An algorithm A is a d-algorithm if

1. A works on a set of data which is not entirely available at the beginning of computation. Data come
while the computation is in progress (conforming to some specified data arrival law), and A terminates
when all the currently arrived data have been processed before another datum arrives.

2. For any input data set, there is at least one data arrival law f such that, for any value of n, A
terminates in finite time, where f has the following properties: (i) f is increasing with respect to ¢,
and (ii) f(n,C(n)) > n, where C(n) is the complexity of A. Moreover, A immediately terminates if
the initial data set is null (n = 0).

O

The size of the set of processed data is denoted by N. The data arrival law is denoted by f(n,7),
where n denotes the number of input data available at the beginning of the computation, and 7 denotes the
time. That is, f(n,7) denotes the amount of input data that are accessible to the d-algorithm at any time
7. Moreover, we have the constraint f(n,0) = n, since n denotes the size of the initial input. Given the
termination condition, if we denote by ¢ the running time of some d-algorithm, then N = f(n,t).

The form proposed in [9] for the data arrival law is

f(n,t) =n+ kn't?, (1)

where k, v, and 3 are positive constants. Such a form of the arrival law is rather flexible, and its polynomial
form eases the reasoning about algorithms that use it. In particular, note that, when v = 0, the amount of
data that arrive in one time unit is independent of the size of initial data set. If 8 = 1, then the data flow
is constant during the time, while in the case 8 > 1 the flow of data actually increases with time. Similarly,
when f < 1, fewer and fewer data arrive as time increases.

Definition 2.2 Consider a given problem II, and let A be a d-algorithm for II, working on a varying set of
data of size N. Consider now an algorithm A, that perform the same computations as A, except that A
works on the N data as if they are available at time 0. Then, if A and A, use the same number of processors,
A, is called the static version of A. O

Note that this definition of the static version of a d-algorithm is somehow different from the definition from
[9]. Indeed, the definition from [9] is similar with definition 2.2, except that “perform the same computation”
is replaced by “solves the same problem”, and, in addition, A, is the best known algorithm that solves the
given problem. However, as noted in [6], such a definition is of little relevance, since there are d-algorithms
whose performance is inherently worse than in the static case as defined in [9]. Therefore we chose the
above definition, as suggested in [6]. In addition, this definition allows us to define the time complexity of a
d-algorithm in a more elegant manner, as we shall see below.

Example 2.1 In order to make a clear distinction between the two definitions of the static version, let us
consider the problem of sorting a sequence of numbers. Consider then the d-algorithm A that solves this
problem and performs the following computations: Sort by some efficient method the initial data set, putting
the result in an array; then, insert each datum that arrive into the sorted array. Conforming to definition 2.2,
the static version Ag of A is an algorithm that receives the amount of data processed by A, sorts what was
the initial sequence for A, and then inserts each additional datum into the already sorted array. Considering
that N > n, the time complexity of A, is ©(N?2). On the other hand, the static version of A as defined in
[9] takes the whole sequence of length N and sorts it using some efficient method. The complexity is now
O(NlogN). |



It is important to emphasize the difference between the time complexity and the running time in the
data-accumulating paradigm. In the static case, the time complexity C(n) of some algorithm A on input
w, |w| = n, is defined as the running time of A,. Such a complexity is a function of n, and there is no
difference between the notions of time complexity and running time. We define the time complexity in the
data-accumulating case in a similar manner, that is, as a function of the size N of the processed input.

Definition 2.3 Given some d-algorithm A, some data arrival law f, and some initial data set of size n,
suppose that A terminates at some time ¢, where ¢t depends on both n and f. We call ¢ the running time of
A.

Given the amount of data N that is processed by A, the time complexity C(N) of A (or just complexity
for short) is defined as the termination time of Ay, expressed as a function of N, where A, is the static
version of A. m|

Note that definition 2.3 is valid in both the sequential and parallel case. However, for clarity, we use the
notations ¢ and C'(N) for the sequential case. On the other hand, when explicitly referring to the parallel
case, we add the subscript p. That is, when speaking of a parallel d-algorithm, we denote its running time
by t, and its (time) complexity by Cp(N).

By contrast to the static case, in the case of d-algorithms the time complexity and the running time are
different from each other. Indeed, consider some d-algorithm A, working on some input where the size of
the initial data set is n and new data arrive while the computation is in progress, according to some arrival
law f. Starting from the analysis of the static version A; of A, one can easily compute the complexity
C(N) of A. However, the complexity is not a very useful measure, since N itself is a function of time. The
running time is obtained by solving an implicit equation of the form ¢ = C'(NV). Similarly, the parallel time
complexity is different from the parallel running time.

To further clarify the concepts of complexity and running time, let us consider the following examples.
These examples are mentioned in [7], but in another context.

Example 2.2 Given two power series

g() = gotgz+grt+---,
h(z) = ho + bz + hoz® + -+ -,

where g; and h; are real numbers for any nonnegative i, compute the sum g 4+ h of the two series. The
coefficients g; and h; come in pairs (g;, h;) in real time, N(7) such pairs arriving before time 7, where
N(7) = n + kn"7P. The result should be reported at that time ¢ when a polynomial of degree N (t) is
available as a (partial) result.

The problem described in this example can be solved by a d-algorithm, since the result reaches the degree
N(t) only if N(t) pairs of coefficients have been processed.

The coefficients of the sum of the two power series, denoted by s;, are given by s; = g; + h;. Therefore,
the computation of the first n such coefficients takes n time units (one addition only is necessary for each
such coefficient). The complexity in the static case in thus n. Based on the static complexity, it is easy
to see that the complexity of a d-algorithm that solves the problem is C(N) = N. We have therefore a
d-algorithm of linear complexity. The running time of such a d-algorithm is given then by an equation of the
form t = C(N). That is, the running time can be obtained by solving the implicit equation ¢ = n + kn7t".
O

Example 2.3 Given two power series as in example 2.2, with hg # 0, compute the series r(z) = g(z)/h(z).
The coefficients of the two series come in pairs, in real time, respecting the same arrival law as in example 2.2.
The result should be reported at that time ¢ when a polynomial of degree N (t) is available as a (partial)
result.

The coefficients r; has the form r; = (g; — 22;10 rrhi—k)/ho. The coefficient r,, can be thus computed
only when g, and h, are available. Moreover, r, does not depend on any coeflicient g; or h;, with j > n.
Therefore, this computation is also one that can be performed by a d-algorithm.



In order to compute the i-th coefficient r; of the result one needs to compute all the coefficients 7y,
0 < k < i, and then insert them in the above formula. Therefore, the computation of the first n coeflicients
require O(n?) time. A d-algorithm that solves the problem has a quadratic complexity (C(N) = O(N?)),
and a running time given by ¢t = (n + kn"t?)2. Note that we cannot find a better algorithm, since the i-th
coefficient of the product r; depends on all the coefficients g, hg, and ¢, 0 < k < . O

In general, as shown in [9], in the case of a sequential d-algorithm, the running time is given by the
solution of the following implicit equation:

t = ca(n + kn"t%)", (2)

where the static counterpart of the d-algorithm in discussion has a complexity of ¢4 NV, for a positive constant
¢q- The complexity of such a d-algorithm is also ¢4 NV. In the parallel case, we have a similar equation for
the running time:

_ cap(n+knt)Y 3
pega,p)y

conforming to a result given in [9] and improved in [6], where S'(1, P) is the speedup offered in the static
case by an algorithm that uses P processors, and cqp is a positive constant. The parallel complexity is in
this case ¢gpNV/S'(1, P).

3 Correcting algorithms

A c-algorithm is defined in [9] as being an algorithm which works on an input data set of n elements, all
available at the beginning of computation, but V(n,7) variations of the n input data occur with time. For
the sake of consistency with the analysis of d-algorithms, we denote by f(n,7) the sum n+V(n,7). We call
the the function V' the corrections arrival law. More precisely, given some time 7 and some initial input of
size n, the quantity V' (n, T) represents the number of corrections that arrived in the time interval [0,7]. We
consider that V' (n,0) = 0. That is, no corrections are present at time 0.

We propose a definition of a c-algorithm that is similar to the one of a d-algorithm [6]:

Definition 3.1 (C-algorithm) An algorithm A is a c-algorithm if

1. A works on a set of n data which is available at the beginning of computation. However, V(n,t)
corrections to the initial input data occur with time, and A terminates at some time ¢ when all the
corrections received up to time ¢ have been processed.

2. For any input data set, there is at least one corrections arrival law V' such that, for any value of n, A
terminates in finite time, where V' has the following properties: (i) V' is increasing with respect to ¢,
and (ii) V(n,C(n)) > 0, where C(n) is the complexity of A. Moreover, A immediately terminates if
the initial data set is null (n = 0).

O

The rationale behind this definition is the same as in the d-algorithm case: The first item is the definition
introduced in [9], while the second one implies that there is at least one corrections arrival law such that a
correction occurs before the algorithm in question has finished processing the initial input data.

Note that algorithms that correct themselves when their input changes have been studied [10, 11], but
they do not fall within the theory of c-algorithms, since this theory assumes a real-time component, namely
the corrections arrival law. We will call such algorithms, where the corrections arrival law is not considered,
dynamic algorithms®. The reader should not confuse the notion of c-algorithm (or d-algorithm) with the
notion of dynamic algorithm. The former notion assumes a real-time arrival law for the input and a specific
termination condition, while a dynamic algorithm has neither real-time restrictions on the input, nor special

1Sometimes called “incremental algorithms”.



termination rules. The terminology is indeed confusing, but these terms were already introduced elsewhere
[9, 10, 11], hence we will use them as they are.

It remains to define the form of a correction in order to complete the definition of a c-algorithm. Generally,
we consider that a correction consists of a tuple (i, v), where 7 denotes the index of the datum that is corrected,
1 <i <mn, and v is the new value for that datum.

An important consideration regards the quantity in terms of which the complexity analysis is expressed.
It is not reasonable to give complexity results with respect to n only, since processing the corrections generally
takes an important part of the computation time (it is consistent to assume that most of the data that are
corrected are already considered; therefore, a c-algorithm will have at least to insert the new (corrected)
datum into the solution; however, such an algorithm may also have to remove the effects of the old value).
It seems more consistent, though, to consider the quantity f(n,t) as the basis for complexity analysis, where
t denotes the termination time. We will denote f(n,t) by N, as in the case of d-algorithms.

The size of the whole input data set (including the corrections) will be denoted by N,. Since the input
data set is virtually endless in the data-accumulating paradigm, we will consider N, to be either large enough
or tending to infinity.

We can modify examples 2.2 and 2.3 in order to fit the new paradigm of c-algorithms as follows.

Example 3.1 Given two polynomials of fixed degree n

9(z) = go+ g+ ga’+ -+ gaz",
hz) = ho+hix+hox® + -+ hpz",

where g; and h; are real numbers for any ¢, 0 < i < n, compute the sum g + h of the two polynomials. The
coefficients g; and h; are given at the beginning of the computation, but corrections to the coefficients arrive
in real time, V(n,t) such corrections arriving before time ¢, where V(n,t) = kn?t?. The result should be
reported at that time ¢ when all the corrections received before ¢ have been considered. O

Example 3.2 Given two polynomials as in example 3.1, with hy # 0, compute the quotient of the two
polynomials r(z) = g(z)/h(z). The coefficients of g and h are given at the beginning of the computation, but
corrections to them arrive in real time, V' (n, t) such corrections arriving before time ¢, where V' (n,t) = kn7t°.
The result should be reported at that time ¢ when all the corrections received before ¢ have been considered.
O

These examples will be used henceforth in order to illustrate the properties of c-algorithms.

3.1 The Static Version of a C-Algorithm

Throughout the rest of the paper, it is assumed that an algorithm A, which applies one update only has
a complexity of Cy(n), where Cy(n) = ¢,n¢ and € is a nonnegative constant. However, it may be useful
sometimes to consider simultaneously a bundle of corrections of size b. Let an algorithm that performs this
processing be A% of complexity C%(n,b). Now, considering the parallel implementation of A, and A%, we
make the following assumption:

Claim 1 For some problem II solvable by a c-algorithm, let A, be the best P-processor algorithm that
considers a correction, and let A’ be the best known P-processor algorithm that considers a bundle of
corrections of size b. Also, let the speedup manifested by A, and A be S, (1, P) and S%(1, P), respectively.
Then, S, (1, P) = S’(1, P). m|

In other words, the speedup manifested by A, is the same as the speedup manifested by A%. We believe
that this is a reasonable assumption, since the computation performed by A’ is essentially the same as the
computation performed by A, (except that there may be some initial manipulation like sorting the bundle
of corrections; however, such a manipulation manifests linear speedup, and hence does not affect the overall
speedup of Ab).



Note that a c-algorithm has to perform some initial processing. Moreover, such a processing may perform
more computations than required for merely building the solution in the static case, in order to facilitate a
fast update. Generally, we consider the computations that are performed before considering any correction
as having a complexity of C'(n) = ¢n®, for some positive constants a and c¢. It is worth noting that the
complexity of an update C, is always upper bounded by C’ since, in the worst case, the algorithm has to
build a new solution for the whole data set, and the complexity of such a processing is given by C’.

Definition 3.2 Consider a given problem II, and let A be a c-algorithm for II, working on a varying set of
data of size N. Consider now an algorithm A, that perform the same computations as A, except that A,
works on the N data as if they are available at time 0. Then, if A and A, use the same number of processors,
A, is called the static version of A. O

Definition 3.3 Given some c-algorithm A, some corrections arrival law V', and some initial data set of size
n, suppose that A terminates at some time ¢, where ¢ depends on both n and V. We call ¢ the running time
of A.

Given the amount of data N that is processed by A, the time complexity C(N) of A (or just complexity
for short) is defined as the termination time of Ay, expressed as a function of N, where A, is the static
version of A. a

The static version of a c-algorithm, as well as the running time and the time complexity, are hence defined
similarly to the case of d-algorithms. Again, definition 3.3 is valid in both the sequential and parallel case.
We denote by S’(1, P) the parallel speedup for the static case.

4 Complexity

We analyze here the complexity of a general form of a c-algorithm. Our analysis uses the following corrections
arrival law (introduced in examples 3.1 and 3.2):

V(n,t) = kn"t?, (4)

since this was the arrival law mainly used when studying d-algorithms [5, 6, 9].

4.1 Processing the corrections one at a time

We first consider the case in which the c-algorithm processes the incoming corrections one at a time.

Theorem 4.1 Consider some problem II solvable by a dynamic algorithm. Let A, be the best known dynamic
algorithm that solves II, and let Aps be a parallel version of As, which uses P processors and exhibit o
speedup S'(1, P). Then, there exist a sequential c-algorithm A and a P-processor c-algorithm A, that solve
II. Moreover, when A and A, work on an initial set of data of size n and with the corrections arrival law
given by (4), there exist n', k', and ~', where v’ and k' are constants and n' is a function of n, such that
the properties of A and A, (namely, time complezity, running time, and parallel speedup) are the same as
the properties of some sequential d-algorithm Agq and some P-processor d-algorithm Apq, which work on n'
initial data and with the data arrival low f(z,t) =z + k' '8 , where the complexity of Ay is ¢cN, and the
parallel speedup manifested in the static case by Ayq is S'(1, P).

Proof.  Assuming that such d-algorithms A4 and Ap, exist, recall that the running time ¢ of A, is given
by t = ¢N, where N = f(n',t). That is, the relation from which all the properties of A4 can be derived is

t=c(n' + k'n'"'tP). (5)
Analogously, the main relation for the parallel case (that is, for the algorithm A,4) is

. cp(n' + k'n"'tP)
P S'(L,P)



Therefore, if we show that there exist n’, 7/, and k' such that we can consider two c-algorithms A and
A, whose running times respect relations (5) and (6), respectively, we complete the proof. We do this in
what follows.

The computation performed by A can be split in two parts: the initial processing, and the processing
of one correction. Let the algorithm A’ that performs the initial processing be of complexity C'(n) = en®,
and the algorithm A, that processes a correction be of complexity C,(n) = ¢,n¢, € > 0.

We build the algorithm A, starting from A’ and A,. A will perform the following computations:

1. Compute the solution for the initial amount of data n, using A’. This takes C'(n) time.

2. For each newly arrived correction, compute a new solution, using A,. Terminate after this only if no
new correction arrived while the solution is recomputed; otherwise, repeat this step. The complexity
of this step is Cy(n).

The complexity of A is then C(N) = C'(n) + Cy(n)(N — n), and, considering the form of C'(n) and
f(n,t), this gives the following implicit equation for the termination time:

~
I

en® + cynf(n + kn"t? —n)

c
= c(n®+ 2Lkn1teth).
c

E:
a

Then, considering n' = n®, v =
equation (5).

With regard to the parallel implementation, considering that the static version of A provides a speedup
S'(1, P) when using P processors, and that the complexity of A is C (), it is immediate that the complexity
in the parallel case is C(N)/S'(1, P). But then relation (6) as the implicit equation for the running time of
A, follows immediately. As shown at the beginning, this is enough to prove that the properties of A and A,
are identical to the properties of A4 and Apq.

However, in order to finalize the proof, we have to take into consideration the second item from defini-
tion 3.1. That is, we have to prove that A terminates for at least one corrections arrival law and for any
value of n'. But it has been proved in [9] that a d-algorithm of complexity ¢N terminates for any initial
amount n of input data if § < 1. |

, and k' = ke, /c, we obtain for the running time of A the implicit

4.2 Processing the corrections in bundles

One may wonder why a c-algorithm cannot consider the incoming corrections in bundles of size b instead of
one by one. We now analyze this possibility.

Recall that we denote by A% the best known algorithm that applies b corrections. Let the complexity of
Ab be CP(n,b), and the complexity of A,, the (best known) algorithm that applies one correction only, as
in theorem 4.1, be Cy(n).

Suppose that algorithm A of theorem 4.1 terminates at some time t for some initial data and some
corrections arrival law. Further, let A, be an algorithm that performs the same processing as A, except
that, instead of applying each correction immediately, it waits until some number b of corrections have been
accumulated and applies them at once using algorithm A? described above. Note that we do not impose any
restriction on b; it may be either a constant, or a function of either n or ¢ or both. We have the following
immediate result:

Lemma 4.2 Given some solution o to a problem I and a set of input data of size n, let A%, be the best known
algorithm that receives o and i corrections, and computes a solution o, for the corrected input. Analogously,
let AJ be an algorithm that behaves in the same way as Al except that it processes some set of j corrections,
j > i. If we denote the complezity of Al by C!, and the complezity of Al by C!, then C!, < C!'.

Proof.  Assume that C], > C)/. But then one can construct an algorithm for performing i corrections only
in time C}, as follows: When only ¢ corrections are sought, apply AJ, to perform the requested corrections,



together with j — i corrections that change nothing (that is, “correct” j — i values to their original value).
Technically speaking we have j corrections, and thus we can use AJ in order to perform them. But we
obtained in this way an algorithm for updating i elements which is better than A, and this contradicts the
assumption that A? is the best known algorithm that performs such an update. a

Corollary 4.3 Given some solution o to a problem 11 and a set of input data of size n, let A® be the best
known algorithm that receives o and b corrections, and computes a solution o, for the corrected input. Also,
let Ay (of complexity C,,) be the best known algorithm that receives o and one correction only and returns
the corresponding corrected solution. Then, C2 > C,, for any strictly positive b.

Proof. By induction over b, using lemma 4.2. O
The following upper bound on the update time for b corrections is also immediate:

Lemma 4.4 Given some solution o to a problem Il and a set of input data of size n, let A’ be the best
known algorithm that receives o and b corrections, and computes a solution o, for the corrected input. Also,
let Ay (of complexity Cy,) be the best known algorithm that receives o and one correction only and returns
the corresponding corrected solution. Then, C® < bC,, for any strictly positive b.

Proof.  Again, assuming that C° > bC,, one can build an algorithm that corrects ¢ when b input data
change and which is better than A%, by simply applying A,, b times, contradicting in this way the hypothesis
that A% is the best algorithm for this process. o

Coming back to the discussion about A and Ay, let Ay be a variant of algorithm Ay, for which the buffer
size is correctly chosen such that A, does not wait until b corrections have arrived, but instead processes
whatever corrections are available whenever it has time to do so (that is, as soon as it finishes processing the
previous bundle). For simplicity, we assume that the complexity of the initial processing C'(n) is the same
for A, Apy, and Ap. We believe that this is a reasonable assumption, since the processes are essentially the
same in the two c-algorithms. Then, it follows immediately from claim 1 that

Lemma 4.5 Given A, Ay, and Ay as above, let S1, Sy and Sz be the speedup of the static version of A,
Apw, and Ay, respectively, when implemented using P processors. Then, S; = Sy = S3.

Note that the problem in example 3.1 does not admit an updating algorithm that processes a bundle of
size b at a time, b < n, and whose running time is smaller than b times the time required for performing a
single update?.

On the other hand, the updating algorithm for the problem in example 3.2 has a time complexity
independent on the number of corrections that are considered. Indeed, assume that some coefficient h;
changes. Since we consider a worst case analysis, we can assume without loss of generality that ¢ > n/k
for some constant k. Then, all the coeflicients r;, 0 < j < ¢ should be recomputed. However, note that r;
cannot be recomputed before the values of all r, 0 < k < j are known. Therefore, updating the solution
requires Q(i2) = Q(n?) time. But this is also the complexity of the algorithm that recomputes the solution
from scratch, therefore, it takes the same time to consider any number of corrections.

4.3 Optimality considerations

Recall that in theorem 4.1 an algorithm A is given which solves the corresponding problem II correctly.
However, nothing is said in the theorem about the optimality of A. This issue is now studied. We show in
what follows that there are instances of the input for which there is indeed an algorithm better than A, but
that a form of theorem 4.1 holds for this new algorithm as well.

As stated at the beginning of section 4, we consider the complexity of A, as being C\(n) = ¢,n¢. Also,
let the complexity of A% be C%(n) = ¢, b*n¢. Then, corollary 4.3 and lemma 4.4 imply that €, is a positive
number, no larger than 1.

2Since we are dealing with worst case analysis, we do not consider exceptional cases like the one when some corrections that
need to be considered are on the same index.
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Lemma 4.6 Ay is no better than A iff either e =1, or 8> 1, or B =1 and Bkc,nt" > 1.

Proof. The running time ¢, of Ay is given by

ty = cn®+ Z C?(bi,n),

i=1
m
= cn®+cynt Z bs®, (7)
i=1
where m is the number of times A% has been invoked, and, when A? is invoked the i-th time, the size of the

buffer b is b;.
But, since 0 < ¢, < 1,and b; > 1, 1 < i < m, we have

> b =V(n,t). 9)
i=1
It follows from (7), (8) and (9) that
ty < en® + ke n . (10)

On the other hand, we found in the proof of theorem 4.1 that the corresponding equation for the running
time of A is

t =cn® + keyn P, (11)
Let R(n,t) be the function R(n,t) = cn® + ke,nT7t? — t. Then, from relation (10) we have

R(n,ty) >0,
and from relation (11) it follows that
R(n,t) =0.
The above two relations yield
R(n,t) < R(n,t), (12)

for any size of the initial input n.
Moreover, since there is at least one i such that b; > 1, then ", b = > b; iff ¢, = 1. Therefore,
we can further restrict relation (12) as follows:

R(n,t) < R(n,tp) if € <1, (13)
R(n,t) = R(n,tp) if € =1. (14)
The derivative of R with respect to t is

OR a1
= BkeynS ~1.
5 BkeyntTE

For €, < 1, considering relation (13), we have:
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1. If g > 1, then R~ 0 for t large enough. Therefore, for such ¢, R is strictly increasing with respect to
its second argument In this case, given relation (12), it follows that ¢ < t;. In other words, A is no
better than A in this case.

2. If B < 1, then, & at < 0 for t large enough. Hence, R is strictly decreasing with respect to ¢t. Therefore,
analogously, t > ;. In this case, A is no better than Ay.

3.Ifg =1, then 9% s positive iff Bkc,n¢t” > 1. Therefore, if Bkc,n¢t” > 1, then we are in the same
case as in item 1 above. Hence A is no better than A. Otherwise, analogously to item 2, A is no
better than Ap.

On the other hand, when ¢, = 1, relation (14) holds. But R is strictly monotonic with respect to its second
argument. Therefore, in this case, t = t, and hence Ay is no better than A, their running times being, in
fact, identical. m|
We found therefore that A is optimal iff either e, = 1, or 8 > 1, or 8 = 1 and Bkc,n¢t7 > 1. In the other
cases, Ap may be better than A. Recall here that Ay, is the algorithm that waits for b corrections to have
accumulated before processing them (unlike A, which processes any available corrections as soon as it has
time to do so). It is somewhat intuitive that Ap,, is no better than Ay, but we give a proof for this below.

Lemma 4.7 Ay, is no better than Ay when 8 < 1.

Proof. We use the relations

(Zb) gzm: b (15)

foranym >0,b; >1,1<i<m,and 0 <a <1, and

m a m
<Z bz-) > b (16)
i=1 '
for m and b; as above, and a > 1. These relations can be easily proved by induction over m.

When speaking of A;,, we denote by m,, and b,,; the values that correspond to m and b; in the case of
Ay, respectively. We denote by tp,, the running time of Ap,,, which has the form

Moy
tow = cn® + cyn Zb 4ty (17)
Jj=1
where t,, is the extra time generated by the waiting process. We denote by t,,; the waiting time before each
invocation of the algorithm that applies the corrections, and by a; the number of corrections Ay, waits for
before each such invocation. Note that ¢, = > ;% tw;. Moreover, the number of corrections that arrive
during t,; is given by a; = kn”((t + tw;)? — t#) for some positive ¢. But (¢ + tw;)? — ¥ < ¢ by relation
(15) for m = 2. Therefore, a; < kn’ytgi.
But, for any i, 1 < i < My, buit1 = kn7((t + twpi)? —t°) + ai11, where t,,; represents the time in which
the previous buffer of corrections is processed. But then t,,,; = ¢,n°b};, and, as above, (t+twp,~)5 —t8 < towpi-
It follows that

bwirs < kn7(cyn®) b2 + knt5 .

The above relation implies that abﬁfi” > byitr1 — kn"tﬁi, where we denote kn?(c,n¢)¢ by a. But, since
B <1 and by; > 1, ab; > abffi". Therefore,

bwz’+1 — kn”’tii

by, > 2
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Note that me buwi = kn”’tfw, since all the corrections that arrive before the termination time must be
processed. Then, by summation over i of the above relation we have

Mw v My
Yoo > M, N
a

wi”
i=1 =1

But then, from relation (17),

tow > cn® + t ——Zt A+ to, (18)

where b = ¢,nkn”. Considering relations (18) and (10) we have

9(tow) — g(ts) > tu ——Zt (b——)tfw, (19)

where g(t) =t — (b/a)t®. Let us denote the right hand side of relation (19) by G. If G > 0, then relation
(19) leads to g(tpw) > g(ts) and then it is immediate that ¢, > tp, since g is an increasing function for any
t > 1. Therefore, in order to complete the proof, we show that G is positive.

The time between the arrivals of two consecutive corrections at some time ¢ is

1 1/8
A(n,t) = (— +tﬁ> —t. (20)
n
We can assume without loss of generality that Ay, waits for d corrections, where d > 2, and at least

two corrections are waited for at some time ¢; > 5,/2, 1 < i < d (otherwise, Ay, is the same as A4; in the
asymptotic case). Then,

d
tw > > An,t)
i=1

d d
> > (A/kn? + )Nt
=1 =1
d 8 4
> (Z t,-) = >t +d(1/kn)'/"
=1 =1
> by — - (21)

Assume now that t’fw < o t5.. Then, kn”tfw < ol kn7t5 .. therefore the number of corrections

processed by Ay, is smaller than the number of corrections for which Ap,, waits, which is absurd. Therefore
5o bS8
by 2 Dt (22)
i=1
Considering relations (21) and (22), we have

G >ty — (1+g)tfw

But then G is obviously positive for t3,, large enough, since the left hand side of the above relation tends
to infinity when %, tends to infinity. This completes the proof, since the fact that G is positive implies that
tyw > tp as shown in relation (19). O
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Note that, for the problem in example 3.1, A is always optimal, since, for this case, ¢, = 1. On the other
hand, in the problem of example 3.2, ¢, = 0, and hence A is not optimal in some cases (namely, when § < 1,
or 8 =1 and Bkc,nT < 1), for which the optimal algorithm is A, as shown by lemma 4.7.

The proof of lemma 4.7 contains yet another interesting result. We show there that by;+1 < abiei" + a;.
Since A does not wait for any correction, we have analogously b; < abf ®. But, applying this relation
recursively ¢ times we observe that

biv1 < a(1—(Bes)')/(1—Bes) (bl)(ﬁfb)i )

But 0 < Be; < 1, hence bi1; < b;. On the other hand, by = kn”(cn®)?, since the first invocation of
the algorithm that processes the corrections happens exactly after the initial processing terminates, that is,
after cn® time units. Therefore, in the case of Ay, the size of the buffer is bounded by a quantity that does
not depend on time, but only on n. Then, the running time of A4, is given by an equation of the form

ty = c(n" + k"'n""" D),

which is similar to the form obtained in the case of A in theorem 4.1. Starting from this expression, one can
follow the same reasoning as in the proof of theorem 4.1 to derive an implicit equation for the parallel case
of A similar to equation (6). Lemmas 4.6 and 4.7 therefore imply:

Theorem 4.8 The c-algorithm of theorem 4.1 is optimal iff the corrections arrival law has the following
property: FEither 3 > 1, or 8 = 1 and Bkc,ntY > 1. If this property does not hold, then the optimal
algorithm is Ay, where Ay processes at once all the corrections that arrived and have not been processed yet.

Moreover, let Ay work on n initial data and with the corrections arrival law given by (4), and let Ay
be the P-processor parallel implementation of Ay, where the static version of Ay, exhibit a speedup S'(1,P).
Then, there exist n", k", and v, where v" and k" are constants and n' is a function of n, such that the
properties of Ay and Ay, (namely, time complezity, running time, and parallel speedup) are the same as
the properties of some sequential d-algorithm Ay and some P-processor d-algorithm Apq, which work on n"
initial data and with the data arrival law f(z,t) = z + k"27" %, where the complexity of Aq is ¢N, and the
parallel speedup manifested in the static case by Apq is S'(1, P). O

Corollary 4.9 Consider some problem I solvable by a c-algorithm. With A, Ay, n', 0", ~', ", k', and k"
as in theorem 4.1 and theorem 4.8, given some corrections arrival law V of the form (4) and some initial
data set of size n, define

P(2,y) = x if the optimal algorithm for I onn and V is A
nY) = y otherwise.

Let ny = P(n',n"), 1 = PH®',v"), and ky = P(k',k"). Then,

1. For a problem admitting a sequential c-algorithm and a parallel P-processor c-algorithm (P = &(ny +
klnrlyltg)‘s ) of complexity cN* and c,N'», respectively, such that the speedup for the static case is
S'(1,P) =& (n1 + kln'“tg)s, where S'(1, P) > 1 for any strictly positive values of n and t,, we have
for ¢, /S'(1,P) < c:

t 1
— = N, - —
Ptp wa’f'nl klc,

where =y =1, and 0 <6 <1,0< s < 1. For all values of B and 1,
}>39@m.

p ©Cp

2. For any problem admitting a sequential c-algorithm and a parallel P-processor c-algorithm such that
the speedup for the static case is S'(1, P) = 1, and for any data arrival law such that either B <1, or
11 > 1 and 1/2 < ky1c?(B — 1), the speedup of the parallel c-algorithm is S(1,P) = 1.
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3. For any problem admitting a sequential c-algorithm and a parallel P-processor c-algorithm such that
the speedup for the static case is S'(1, P) = 1, and for any data arrival law such that either 8 < 1, or
v > 1 and n is large enough, the speedup of the parallel c-algorithm is S(1, P) = 1.

Proof. These results were proved in [6] with respect to d-algorithms. But, conforming to theorems 4.1
and 4.8, the properties of c-algorithms are the same. In addition, conforming to lemma 4.5, Ay is better
than A iff the P-processor implementation of A4y is better than the P-processor implementation of A (that is,
there exists no situations where A is better in the sequential case, but the optimal algorithm for the parallel
case is Ap). Therefore, the results follow immediately. O

Corollary 4.9 contradicts the speedup theorem. More precisely, the first item shows that the speedup of
any c-algorithm grows unbounded as long as the static counterpart of that c-algorithm manifests a superuni-
tary speedup. On the other hand, according to items 2 and 3, if the speedup for the static case is unitary,
then the c-algorithm manifests unitary speedup as well.

Lets us refer to examples 3.1 and 3.2. The complexity of the initial processing in example 3.1 is n, since
the coefficients s; need to be computed. Then, each correction can be handled in unit time: Suppose that
some coefficient g; is corrected. Then, only the coefficient s; of the product needs to be recomputed, and
this is done by adding the new value of g; to (the old value of) h;. Therefore, the complexity of A4, for this
problem is unitary. Then, the running time of the c-algorithm is given by ¢t = n + kn”t?. One can note that
the expression for the running time of the c-algorithm that solves the problem in example 3.1 is identical
to the d-algorithm that solves the corresponding problem. The reason for this identity is that the update is
fast, and no initial computation other than the computation of the initial solution is required.

On the other hand, in the case of the problem from example 3.2, considering a correction takes the same
time as rebuilding the solution from scratch, namely ©(n2), as shown at the end of section 4.2. Therefore,
the running time of the algorithm that considers one correction at a time is given by t = n? + kn7+2t8. Note
that the complexity of the update algorithm is the same as the complexity of the algorithm that rebuilds
the solution from scratch. As we note in section 5.1, this is not a singular case.

5 Related Work

In the following, we consider two interesting classes of problems for which dynamic algorithms were studied,
and analyze them in the environment offered by the c-algorithm paradigm.

5.1 Algebraic Problems

The theory of dynamic algorithms for algebraic problems has been recently investigated in [11], where the
following lower bounds are established for a number of problems, each of size n:

Proposition 5.1 [11] Any dynamic algorithm for the following problems requires 2(n) time per update:
e polynomial evaluation at a single point,
o multipoint evaluation, where evaluation points are allowed to change,
e the chirp z-transform, where z is allowed to change,
e polynomial reciprocal,
e solving a triangular Toeplitz system of equations, and

e extended GCD problem.
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Each problem in proposition 5.1 is known to have an algorithm that solves the problem in the absence
of any correction in O(n) time. Therefore, none of these problems admits an update algorithm whose
performance is better than the naive algorithm that rebuilds the whole solution using the corrected input.
Moreover, based on proposition 5.1, it is mentioned in [11] that many other algebraic problems have this
property.

Problems such as those in proposition 5.1, for which no fast update algorithm is possible, form an
interesting class. For problems in this class, the algorithms implied by theorem 4.1 are not optimal. Indeed,
the time complexity of the algorithm that performs however many corrections is the same as the complexity
of an algorithm that performs only one correction. This complexity is the same as the complexity of the
static algorithm for the given problem. Therefore, the algorithm of theorem 4.1 is not optimal, as shown in
theorem 4.8.

We say that we have an “updating asynergy” in the case when applying many corrections at once is no
better than applying those corrections independently. The algebraic problems described above form a rather
large class where such an asynergy does not hold. However, to our knowledge, no other approach to applying
many corrections at once has been previously considered in the literature (except for the trivial case in which
the updating algorithm is no better than the algorithm that builds the solution from scratch).

5.2 Graph Problems

Dynamic algorithms for graph processing were investigated in [10]. Instead of analyzing the complexity of
a dynamic algorithm for graph processing in terms of the size of entire input, such algorithms are analyzed
in terms of an adaptive parameter ||0]| that captures the size of the changes in the input and output. In
graph problems, the input and output values can be associated with vertices of the input graph. Given a
correction, the set of vertices whose values change is denoted by 4. Then, the sum of the number of vertices
in § and the number of edges incident on some vertex in ¢ is denoted by |||

The approach used in [10] is to analyze the computational complexity of dynamic algorithms on graphs
in terms of ||d|| rather than the size of the whole graph provided as input. Some general classes of dynamic
algorithms are identified: Such algorithms are said to be bounded if, for all input data sets and for all
corrections that can be applied this set, the time it takes to generate the updated solution depends only on
||6]], and not on the size of the whole input. Otherwise, a dynamic algorithm is called unbounded. A refining
of the class of bounded algorithms leads to a computational hierarchy [10]:

1. problems of polynomial complexity in ||§|| are: attribute updating, priority ordering, all-pairs shortest
path (with strictly positive edge weights), and single source/sink shortest path (with strictly positive
edge weights),

2. problems whose complexities are exponential in ||§]| are: circuit annotation and weighted circuit anno-
tation, and

3. unbounded problems, such as single source/sink reachability, and single source/sink shortest path (with
positive edge weights).

Dynamic algorithms can sometimes be fruitfully analyzed in terms of the parameter ||6]|. However, there
are algorithms for which such an analysis is not possible (namely, the unbounded ones). In addition, the key
point in the theory of c-algorithms is the ability of a c-algorithm to terminate while receiving corrections in
real time. Since [|0]| is a parameter which depends on the specific correction that is applied (moreover, |||
may take any value between 1 and the sum of the cardinalities of the vertex set and the edge set in the input
graph; for this reasons ||d]| is called an adaptive measure), the corrections arrival law cannot be expressed in
terms of ||0]|. Therefore, for the purpose of analyzing c-algorithms, this measure is inadequate. However, an
interesting research direction that can put together the results from [10] and our results would be to see if &
can be bounded, even if for particular shapes of the input or for particular problems.

On the other hand, while the fact that |||| is adaptive is a feature that makes this measure inappropriate
for the analysis of c-algorithms, this feature can offer some benefits in an indirect way. More precisely, one can
draw conclusions on the nature of the correction that is to be processed with respect to the set § associated
with that correction. Based on these conclusions, one may find updating algorithms that processes many
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corrections at once faster than the time required to process the corrections individually. That is, such a
measure can lead to a positive answer to the updating asynergy problem, which we introduced in section 5.1
and we mention as an open problem in section 7.

6 Parallel Real-Time Computations

Corollary 4.9 characterizes the parallel behavior of c-algorithms. More precisely, it shows that even the
slightest superunitary speedup manifested in the static case grows unbounded in the data-accumulating
environment. On the other hand, if the static case provides only unitary speedup, then no improvment can
be obtained in the real-time environment.

These properties of c-algorithms were found previously to hold for various related computational settings
[5, 6, 9]. In fact, we believe that there are many more paradigms in the context of real-time computations
for which superunitary behavior manifests itself, as suggested by the following example.

6.1 A Moving Objects Paradigm

Within an n x n grid, where n is a positive integer, n objects are in perpetual movement. Each object moves
from one grid point (z1,y1), 1 < x1,¥1 < n, to another grid point (z2,y2), 1 < Z2,y2 < n, according to
a given equation of motion that is a function of elapsed time. Specifically, if the n objects occupy certain
positions at time ¢, they all occupy new positions at time ¢ + 1.

If the location of an object at time t is known, it is possible to compute its location at time ¢, for
t' > t, using the object’s equation of motion. Moreover, these motion functions depend on some “external
parameters”, that do not change with time. Computing the motion function for any object requires k;n?
unit-time operations, for some positive constant k;.

As an example of motion function, assume that each grid point influences the move of each object.
More precisely, each grid point (z,y) has an associated “acceleration vector” i(z,y) (defined, for example,
by its components i, (z,y) and iy(z,y) on the two axis of the given n x n grid). At time 0, the velocity
#(j) imposed on some object j depends on each i(z,y), and this dependence weakens with the distance.
Specifically, if the initial coordinates of object j are (zj,y;), then the velocity of this object is ¥(j) =
il<z’y<n(1/d‘j (z,y))i(x,y), where d;(z,y) = 1 + V(@ —2;)? + (y —y;)?, and we denote by i: the vector
composition operator (that is, if the components of ¥(j) on the two axis are v, (j) and v, (j), then v, (j) =
Pi<oy<n(1/di(@,y))in(i,5), & € {z,y}). After this initial “push”, the objects move freely (that is, the
velocity of some object does not change with time), bouncing off the edges of the grid. Therefore, given two
moments in time ¢ and ', ¢ < #', and the location (z;,y;) of some object j at time ¢, the location (z},y})
of this object at time ¢’ is easily computed in constant time. For example, if the z-axis component v, (j) of
¥(j) is positive, then

r_f lzi+2(n—x;) — (@t —t)vg(4)] if object j bounces
T L+ (=) otherwise

The test whether the object bounces is also computed in constant time, and the other cases are similar3.
Finally, since computing #(j) takes ©(n?) time, and the rest of the computation takes constant time, it
follows that the computation of the motion function of some object takes ©(n?) time.

Once the positions of the n objects are known at a specific moment in time, a function ¢ of these positions
is to be computed. For example, let such a function be the centroid of the n objects. Computing ¢ requires
ksn unit-time operations on a sequential machine for some positive constant ks. Moreover, when n processors
are available, the computation of ¢ takes constant time. Assuming that ¢ is reported at some time 7, then
it should be computed with respect to the positions of the n objects at time 7', where 7 — 7' is a positive
constant.

3We assumed here an idealized world, in which the objects reach their initial velocity instantaneously, and there is no friction.
Introducing more constraints is certainly feasible, but is not in the scope of this paper.
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Sequential solution. The sequential processor first scans the grid in ks3n? time, where k3 is a positive
constant, to determine an initial location for each object and the “acceleration vector” for each grid
point. Then the algorithm computes a new location for each object, that is, the new position reached
by the object when all such computations of new positions have been performed and the function ¢ has
been computed. Specifically, suppose that the initial position of the i-th object was identified at time
ti, 1 <t; < n? A new position at time ¢} is computed, where t} = t; + (n? —t;) + (k1n® X n) + kon. This
requires kin® unit-time operations. Finally, the function ¢ is computed in kon unit-time operations.
The entire algorithm runs in O(n?) time.

Moreover, the algorithm that is described above is optimal. Indeed, before the function ¢ can be
computed, the algorithm needs to know the position of all the points. Assume now that, at some
moment 77 the algorithm knows the current positions of the n objects and it is ready to compute ¢.
However, this computation takes kon time, hence the result will be available no earlier than at the time
71+ k2n. The difference between this time and the time at which the positions of the objects are known
(1) is clearly not constant, therefore the algorithm needs to compute new positions for each of the n
objects before computing ¢. This takes Q(n?) time, and this establishes the lower bound matched by
the above algorithm.

Parallel solution. If n? processors are available, then each can examine one grid point. The n processors
that locate the n objects collectively compute ¢ in ks time units. The entire algorithm takes k4 unit-
time operations for some positive constant ks. More specifically, assume that ¢ is the centroid of the
n objects, and the grid is stored in the variable grid, which is an n x n array. Then, an algorithm
that solves the problem is the following, where the predicate O(z,y) is true iff, at the moment of its
invocation, grid(z,y) contains an object.

algorithm MovingCentroid(grid; (z,y))
1. for i < 1...n? do in parallel
z; < 0; y; < 0;
O
2. for i + 1...n do in parallel
for j « 1...n do in parallel
if O(i,7) then
Tn(i—1)+j < b Yn(i-1)+5 < J3
O
3. for i « 1...n? do in parallel
v & 2y & yi
O
4. x + z/n; y < y/n;
O

In other words, the above algorithm uses two variables z; and y; for each processor i, 1 < § < n?,
which are initialized with 0 (step 1). Then, those processors that found some point set their associated
variables accordingly (step 2). After this, each processor i writes the values stored in the variables z;
and y; to x and y, respectively (step 3). Recall that our parallel model is the COMBINING CRCW
PRAM, and hence all the values that are written to z and y are added together in step 3. Finally,
in order to obtain the coordinates of the centroid,  and y are divided by the number n of objects
(step 4). Note that a processor that did not find any object writes 0 to both z and y, and such an
operation does not have any effect, since 0 is the identity element for addition.

It is immediate that each step of the algorithm can be performed in constant time, and hence the
whole algorithm takes constant time as well. Therefore, the difference between the time at which the
coordinates of the objects are found and the time at which ¢ is reported is constant, as required.

Speedup. The parallel algorithm offers a speedup of O(n®)/ks = O(n?), and an efficiency of O(n®)/n? =
O(n).
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A (P=Mp, t=my ,r=my)

B > E— C
(P=Mp, t=Mt, r=M) " (P=mp, =My, r=my)

Figure 1: A representation of the relation between the number of processors, the data arrival rate, and the
running time for a parallel algorithm.

Note that the moving objects paradigm is a real-time problem because of the real-time restriction that
limits the difference between the time at which the coordinates of the n objects are found and the time at
which the solution is reported. Moreover, such a problem achieves a superunitary speedup, clearly suggesting
that the speedup theorem does not hold in real-time computations. It should be clear that this paradigm fits
in a class which is in some sense the complement of that of c-algorithms: Here, the corrections are known
(through the motion functions), but the initial locations are not. However, it is interesting to note that if
the initial locations of the moving objects are known, the speedup is still O(n?), while an improved efficiency
of O(n?) results (the running times of both the sequential and parallel algorithms remain unchanged, but
the number of processors required in the parallel case is only n, since the objects do not have to be found
initially). Thus, this version of the problem also manifests superunitary behavior.

6.2 A Graphical Representation

In the classical study of parallel algorithms, the main measure of performance is the speedup (note that the ef-
ficiency measure derives from the speedup). Therefore, a graphical representation involves a two-dimensional
plot in a Cartesian space: One coordinate represents the running time, and the second represents the number
of processors. However, if the input data arrive in real-time, a third parameter must be considered, namely
the arrival rate, which can substantially affect the performance. Therefore, we propose a new graphical
representation. Such a representation was used in [3], but in another context (that is, to represent time,
information, and energy, as originally proposed in [14]).

The diagram we propose is a triangle ABC, as in figure 1. On the edge AB the time increases from m; to
M;, on the edge C'B the arrival rate increases from m, to M,, and the number of processors increases from
mp to Mp on the edge CA, where m; are some minimal and M; some maximal values for each measure,
i € {t,r,P}. Each discrete point in this triangle represents a combination of these three quantities for a
computer working on the problem.

It remains to establish how, given some triangular coordinates P, r, and ¢, the point corresponding to
this situation is determined. We propose two such methods:

1. The point be the center of the circle inscribed in the triangle whose vertices are the points corresponding
to P, r, and t on the appropriate edges*, or

2. The main triangle is divided is smaller triangles (as shown in figure 2). Then, based on this triangula-
tion, the location of the point is established. Note that, given a point @), each of the lines Qtg, QPg,
and Qrg intersect the edges of the triangle twice. One should establish therefore a consistent method

4We consider that the center of the circle inscribed in a degenerate triangle, whose edges are collinear, is the inner edge of
that triangle.
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Figure 2: The main triangle divided into smaller triangles.

for determining which of the two intersection points establishes the coordinate of (). In the example
from figure 2, the intersection points closer to A (for the edge AB), to B (for BC), and to C (for C A)
were chosen, respectively.

The first method seems more likely to lead to an analytical expression, but the second one is simpler.

Note that, if the time or the number of processors are straightforward measures, one needs to find a
meaningful measure for the arrival rate. In the c-algorithms or d-algorithms case, this measure should be a
function of n, 7, and 3, since these are the parameters of the arrival law.

For example, A (minimum time, maximum rate, maximum number of processors) may represent a parallel
computer with a large number of processors receiving the input at a high rate (e.g., 3 is large), and solving
the problem at hand in minimum time and optimal cost. The vertex B (maximum time, minimum data,
minimum number of processors) represents a sequential computer receiving the input data at a low rate and
solving the problem at hand in maximum time but optimal cost. Finally, the vertex C' (maximum time,
maximum data, minimum number of processors) represents a sequential computer receiving a high rate of
input data and failing to solve the problem at hand (the single processor, unable to cope with such a large
arrival rate, gives up after M; time units).

Example 6.1 Let us consider the problem of a c-algorithm that computes the quotient of two polynomials.
This problem was introduced in example 3.2. The arrival law considered is V(n,t) = % (that is, k = 1
and v = 0), and n is fixed. Recall that the complexity in the static case is cn? for some ¢ > 0.Clearly, a
parallel static algorithm for this problem offers a linear speedup. The equivalent diagram for this problem is
shown in figure 6.2. We use the method 2 described above for finding a point corresponding to some (given)
coordinates.

When 3 =0 and P = 1, then we are in the sequential static case. The running time is then ¢ = cn?, and
this situation corresponds to the point C in the figure, whose coordinates are (A’, C’, C"). When the number
of processors is increased to P = cn? and S is still 0, then we have a parallel static algorithm that solves
the problem in one time unit, represented by point C>. Note that all the points corresponding to the static
case are located on the segment C1C5. As expected, if § increases and the number of processors remains 1,
then the running time increases (the point @ in figure 6.2 with coordinates (Q",Q’,C")). Moreover, from
point @, if the number of processors is increased (and 8 remains the same), then the running time decreases

(point S).
Form the points represented in figure 6.2 it can be observed that the properties of the d-algorithm are
indeed captured by our representation. O

Note that the triangle doesn’t have to be equilateral (though it may be made equilateral in any case by
appropriately scaling the measures corresponding to its edges). The lengths of its edges may be determined
in the case of d-algorithms using the following result stated in [5] and improved in [6]:
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Q
(B>B) (B1=0)

Figure 3: A diagram for example 6.1.

Proposition 6.1 For the polynomial data arrival law given by relation (1), let A be any P-processor d-
algorithm with time complexity Q(NV), v > 1. If A terminates, then its running time is upper bounded by a
constant T that does not depend on n but depends on S'(1, P). O

This result establishes a maximum running time for a d-algorithm, given a maximum available number of
processors. Moreover, the triangle in figure 1 may be easily scaled, when the conditions (that is, the number
of processors or the characteristics of the arrival law) change. However, one should find a consistent way of
representing the shape of the data arrival law (on the edge BC). In example 6.1 we used 3 only as such a
measure, but this is a very restricted case.

7 Conclusions

We started this paper by offering a characterization of c-algorithms, while presenting at the same time
a general method to build an optimal c-algorithm starting from a dynamic algorithm. The analysis was
completed by reducing it to the theory of d-algorithms. More precisely, given a some problem solvable by
a c-algorithm, we showed that there is a (hypothetical) d-algorithm whose properties are the same as the
properties of the optimal c-algorithm for that problem. As a consequence, it was found that the speedup
theorem does not hold for the class of c-algorithms (corollary 4.9). This result provides yet another class of
problems that contradict this theorem. Moreover, the moving objects paradigm of section 6.1 suggests that
there are many more real-time computations in which the speedup theorem no longer holds.

On the other hand, the usual measure employed in evaluating parallel algorithms (namely, the speedup
and related measures), proved to be of less use in a real-time environment, where the characteristics of the
input arrival law constitute an important parameter, that the speedup measure fails to consider. Therefore,
we proposed in section 6 a new way of representing the performances of real-time parallel algorithms, which
is simple, intuitive, and capable of capturing all the relevant parameters of the computation, while showing
how they vary with respect to (and in connection with) one another. We consider that this representation
is more clear than the traditional 3-axe representation for at least two reasons:

1. As the traditional representation, our measure shows the variation of speedup with respect to the
number of processors and the characteristics of the arrival law. However, it also identifies in a precise
manner the limit points (namely, the three vertices of the triangle), including those combinations that
cannot lead to a successful computation. Therefore, by looking at the graphical representation, one
can easily identify the critical characteristics of the system.

2. A two-dimensional representation is printed and read easier than a three-dimensional one.
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We believe that the main open problem introduced by this paper is to provide a thorough analysis of the
properties and uses of such a representation, which may put in a new light the analysis of parallel real-time
algorithms.

Another open problem is the updating asynergy phenomenon defined in section 5. Even though we may
tend to believe that, except for the trivial case, the update asynergy is inherent, it is important to recall
that the parallel asynergy theorem® stated in [4] was later invalidated, at least for real-time processing,
in [1, 2, 5, 9] and in this paper. Until this updating asynergy is proved, algorithm designers who build
algorithms to be used in the real-time framework analyzed in this paper should consider the possibility of
handling many corrections at once, since such an approach has both a theoretical and practical use: From
the theoretical point of view, the updating asynergy may be proven false in this way, while in practice such
an approach may lead to faster c-algorithms, as shown in theorem 4.8.

Note that the graph processing c-algorithms may prove very useful in practice, due to the development
of mobile computing. Right now, if a host is moving, the rerouting of the packets addressed to that host is
accomplished through procedures like tunneling [15]. Such procedures—while having the advantage of being
computationally inexpensive— lengthen the communication chain and may lead to an increase in network
traffic. On the other hand, it may be interesting to investigate algorithms that recompute the routing tables
on the fly, since we believe that a large number of mobile hosts may lead otherwise to traffic congestion. It is
immediate that one of the possible paradigms that accommodates such a process is the theory of c-algorithms
on graphs. Note that two solutions to such a problem have been proposed in [12], where simulation results
were presented. One can obtain analytical results by applying the results in this paper to the problem
presented in [12].

We analyzed only one of the multiple real-time paradigms that can be imagined. As mentioned in
section 1, another useful paradigm of this type is presented in [9], namely, the maintenance algorithms (or
m-algorithms), whose study is based on the theory of d-algorithms. Since our paper reduced the analysis
of c-algorithms to that of the d-algorithms, the extension of c-algorithms to something that may be called
maintenance correcting algorithms (mc-algorithms?) is immediate and hence it is not presented here.
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