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Abstract

The design and verification of concurrent and real-time systems are difficult problems. While

model checking proved to be successful as an automatic and effective solution, real-time

systems do not benefit directly from classical model checking since they feature infinite

clock values. Instead, bisimulation and abstraction can be used to build an abstract finite

state machine from the real-time model, which can in turn be model checked.

In the first part of this thesis we consider formal methods for the specification and

automatic verification of finite-state real-time systems with dense time. Both automata and

temporal logic are extended to allow them to model timing delays and to verify real-time

requirements.

Time automata are chosen as the underlying semantic of real-time system because they

are the standard modeling method in designing real-time systems, and their state reachabil-

ity problem is also decidable. We demonstrate how the tools for analysis of untimed finite

state systems can also be deployed in order to verify timed systems. While dense time in

timed automata generates infinite state spaces, we show that time abstracted bisimulations

are decidable for timed automata, and so strong time-abstract bisimulation can be used to

reduce the infinite state-space of a given timed automata model to a finite quotient graph

and finite transition system. Time-abstract bisimulation also preserves both the linear and

branching time properties of the original model sufficiently for verification, while the exact

time delays are abstracted away. The strongly non-zeno timed automata are also proposed

as an extension of timed automata in order to address the deadlock and timelock issues in
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verifying timed systems. This solution is based on the finite quotient graph and comes from

strong time-abstract bisimulation. We then show how TCTL model checking can be reduced

to CTL model-checking using strong time-abstracting bisimulation.

In the second part of the thesis we demonstrate that the satisfaction of TCTL formulas

under a natural semantics for both discrete-time and dense-time timed Kripke structures

can be reduced to a model-checking problem in the point-wise semantics for timed Kripke

structures. Discrete TCTL-preserving abstraction methods of timed Kripke structures, the

so-called gcd-transformation and τ -transformation are introduced.

Some effort has been spent in the untimed domain to bride logical approaches (such as

model checking) and algebraic approaches to formal methods (such as model-based testing).

One of the necessary steps in this direction is a process of establishing an equivalence between

the underlying semantic models in the two domains (Kripke structures and labeled transition

systems, respectively. In particular, several inductive, algorithmic methods that generate a

compact Kripke structure equivalent with given labeled transition systems were developed.

We intended to extend this effort to the dense time domain, but we found instead that

inductive conversion methods are infeasible in large scale, concurrent real-time systems with

dense time domain. While both timed automata and timed Kripke structures can be used

for verification in the dense time domain, we cannot feasibility convert timed automata to

timed Kripke structures in any feasible way. The reasons include the undecidability of trace

properties for timed automata and also an inherent state explosion problem for any inductive

conversion algorithm.
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Chapter 1

Introduction

Computing systems are extensively used nowadays in applications where failure is unaccept-

able such as electronic commerce, medical instruments, telephone switching networks, air

traffic control systems and so on. The need for reliable computing systems is critical, yet we

frequently read about incidents where some failure is caused by a computing system error.

As the involvement of such systems in our lives increases dramatically, it becomes crucial

to ensure their correctness. It is no longer feasible to shut down a malfunctioning system

in order to restore safety since we are so very much dependent on such a system. In some

cases, devices are even less safe when they are shut down. The consequences of replacing

critical code or circuitry can also be economically devastating.

Due to the high growth of the Internet and embedded systems in automobiles, airplanes,

and other safety-critical systems, we will be even more dependent on the proper functioning

of computing devices in the future. It will therefore become essential to develop methods

that raise our confidence in the correctness of these systems [53].

Concurrency and real-time are important techniques, broadly utilized in modern sys-

tems, which features unanticipated interactions and race conditions. Ensuring reliability

and correctness for concurrent and real-time systems poses numerous difficulties. In the last

two decades researchers have extended different formal methods to the analysis of concur-

rent and real-time systems. We use the term “formal methods” to refer to the variety of
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CHAPTER 1. INTRODUCTION 2

formalisms that can be utilized to determine the behavior of a system and to mathematically

verify the logical correctness of that system’s (functional and nonfunctional) requirements

and properties. Formal methods are currently the most promising and automated method

utilized at an early stage during the process of software development.

Studies have repeatedly demonstrated that most of the cost of software development

stems from design (or requirement) defects. Defects in design can cost a hundred times

or more to fix in the testing and maintenance phases than in the design phase. Formal

methods enable us to recognize those defects at the early stage of the software life cycle.

We can remove these problems earlier and significantly decrease the cost of debugging,

maintenance, and re-development. Moreover, formal methods confidently ensure that safety-

critical systems satisfy the desired properties in order to avoid disastrous consequences.

Many formalisms with different degrees of rigor have been utilized in formal methods for

specification, modeling, and verification. Formal methods encompass mathematical logic,

graphical notations, state machine models, and process algebras [63].

1.1 Formal Verification

The main validation methods for complex systems are a simulation, testing, deductive veri-

fication, and model checking. Simulation and testing [82] both involve making experiments

before using the system in the field. While simulation is carried out on an abstraction or a

model of the system, testing is done on the actual product. In the case of circuits, simulation

is carried out on the design of the circuit, whereas testing is done on the circuit itself. In

both situations, these techniques inject signals at specific points in the system and observe

the resulting signals at other points. For software, simulation and testing generally involve

preparing determined inputs and observing the corresponding outputs. These techniques

can be a cost-efficient method to find many errors. However, checking all of the possi-

ble interactions and potential pitfalls utilizing simulation and testing techniques is rarely

possible.
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This problem of design validation (ensuring the correctness of the design at the earliest

stage possible) is the main challenge in any responsible system development process, and

the tasks intended for its solution occupy a huge portions of the development cycle cost

and time budgets. The currently practiced techniques for design validation in most places

are still the veteran methods of simulation and testing. Although provably effective in the

very early stages of debugging, when the design is still infested with multiple bugs, their

effectiveness drops quickly as the design becomes cleaner, and they require an alarmingly

increasing amount of time to uncover the more subtle bugs.

A principal disadvantage of these methods is that one can never be sure when a limit

has been reached or even an estimate of how many bugs may still lurk in the design. As the

complexity of designs increases tremendously, say from 0.5 to 5 million gates per chip, some

far-seeing managers predict the complete collapse of these conventional methods and their

total inability to scale up [53].

The approach of formal verification is a very attractive and dramatically appealing alter-

native to simulation and testing. While simulation and testing explore some of the possible

behaviors and scenarios of the system, the question of whether the unexplored trajectories

contain the fatal bug remains open. Formal verification on the other hand conducts an

exhaustive exploration of all possible behaviors. Thus, when a design is pronounced correct

by a formal verification method, it means that all the possible behaviors have been explored,

so that the questions of proper coverage or a missed behavior become irrelevant.

One of the main approaches to formal verification is model checking. In model checking

a desired behavioral property is verified over a given system (the model) through exhaustive

(explicit or implicit) enumeration of all the states reachable by the system and the behaviors

that lead to them. Compared to other approaches, model checking has three important

advantages. First, it is fully automatic, and its application requires no user supervision

or expertise in mathematical disciplines such as logic and theorem proving. Anyone who

can run simulations of a design is fully eligible and capable of model-checking the same
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design. In the context of the currently practiced method, model checking can be categorized

as the ultimately superior simulation tool. Secondly, when the design fails to satisfy the

desired property, the process of model checking always generates a counterexample that

shows a behavior which falsifies the property. This faulty trace offers a priceless insight

into understanding the real reason for the failure as well as significant clues for solving the

problem. Last but not least, model checking has a sound and mathematical underpinning.

These important advantages together with the advent of symbolic model checking, which

allows the exhaustive implicit enumeration of an astronomic number of states, completely

revolutionized the field of formal verification and transformed it from a purely academic

discipline into a viable practical method that can potentially be integrated as an vital

technique for design validation in a lot of industrial development processes [53].

1.2 Temporal Logic and Model Checking

Finite-state concurrent systems are used in various areas of computer science, especially in

the design of digital circuits and communication protocols. Logical errors found late in the

design phase of these systems are an extremely important problem for both circuit designers

and programmers. Such errors may delay taking a new product to the market or result

in the failure of critical devices that are already in use. As already mentioned, testing or

simulation can easily miss significant errors when the number of possible states of the circuit

or protocol is very large. Research on theorem provers, term rewriting systems, and proof

checkers for verification exist, but these methods are time-consuming and often need a great

deal of manual intervention.

The alternative verification method of temporal logic model checking was developed

independently by Clarke and Emerson [36] in the United States and by Quielle and Sifakis

[91] in France. In this technique specifications are expressed in a propositional temporal

logic, and circuit designs and protocols are modeled as state-transition systems. An efficient

search is then used to verify if the specification is true of the transition system. In other
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Figure 1.1: Branching and Linear time logics [16].

words, the transition system is checked to see whether it is a model of the specification.

Branching and linear-time logics are both used in model checking and can be categorized

based on their expressive power. Figure 1.1 shows the hierarchies of temporal logics. In this

figure an arrow L1 → L2 shows that the logic L2 is strictly more expressive than the logic

L1.

Due to the variation in expressive power, different logics have various degrees of impor-

tance for verification. The weakest logics, Hennessy-Milner logic and weak linear-time logic,

can only express properties regarding a finite prefix of a system and play consequently only a

minor role in themselves. They constitute, however, the basis for the more expressive logics

and have some interesting theoretical characteristics. For finite-branching processes, such

as for processes where each state accepts only finitely many transitions, it is known that

two processes are bisimulation equivalent iff they satisfy the same set of Hennessy-Milner
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logic formula [56]. The “until” operator has then been introduced to increase the expres-

siveness of these basic logics (which need infinite formulas to characterize infinite behavior).

On the branching-time side this lead to Computation Tree Logic (CTL) [36], while on the

linear-time side this yields Linear Temporal Logic (LTL) [88] [16]. The logic utilized for

specifications can directly express many of the properties that are required for reasoning

about concurrent systems [53].

1.3 Objectives

The objective of this thesis is to model real time systems and demonstrate how the tools

for analysis of untimed finite state systems can also be deployed in order to verify timed

systems. Also the possibility of inductive conversion equivalences between two timed model

systems will be evaluated. In order to reach this goal we considered different timed mod-

els such as timed petri nets, timed process algebras, graphs with durations, timed kripke

structures and timed automata and we then settled on timed automata, which is a stan-

dard modeling technique in designing real-time systems; in additon, the state reachability

problem is decidable for timed automata and also timed kripke structurs.

We introduce the time-abstract bisimulation method, which reduces the infinite state-

space of a given timed automaton to a finite quotient graph and finite transition system.

Strong time-abstract bisimulation refines the dense state space while preserving enough of

both the linear and branching time properties of the original model for verification.

We consider two main issues in the verification of timed systems namely, deadlocks and

timelocks. A deadlock allows time to pass without the automaton being able to perform

any computation actions. Timelocks on the other hand are situations in which time cannot

progress beyond a certain point. A solution for deadlock and timelock detection uses finite

quotient graphs.

Another step of our approach is in the verification of real-time systems that is, given a

model and a property, check whether the model satisfies the property. We focus on Timed
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CTL or TCTL for short as property-specification language, which features a branching-time

semantics. Model checking of TCTL formulas is also decidable. Timed CTL is a real-time

variant of CTL in which clock constraints may act as atomic propositions and the a time

interval is added to the until operator. Universal and existential path formulas are described

with respect to time-divergent paths. It is showed that TCTL model checking can be reduced

to CTL model-checking using strong time-abstracting bisimulation.

Timed kripke structures are kripke structures where each transition has a duration. We

shows that by utilizing gcd-transformation and τ -transformation in timed kripke structures,

the TCTL model checking of timed kripke structure in point-wise semantics can be used

in order to achieve a sound and complete model checking procedure for TCTL formulas in

continuous semantics.

The two conversion techniques in the untimed domain are introduced and we investigate

the possibility of expanding inductive conversion methods such as these two conversion

techniques in the dense time domain. We prove that developing such inductive conversions

methods between timed automata and timed kripke structures is infeasible in the dense time

domain for concurrent and large-scale real-time systems.

1.4 Organization of the Thesis

The thesis is organized in two parts. The first part deals with timed automata, while the

second part describe timed kripke structure system as follows.

In the timed automata part, in Chapter 3 discrete-time and dense-time systems are

defined. We also explain equivalence and abstraction, which are used to verify real-time

models such as timed automata.

In Chapter 4, we outline the theory of timed automata and we study their closure

properties. It is demonstrated that how this theory can be utilized to specify and verify real

time systems. Time-abstracting bisimulation is also introduced here. Minimization of timed

automata is also explained, and so It is showed that how a finite quotient graph can be
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generated from a given timed automaton using the partition refinement algorithm. Strongly

non-zeno timed automata are defined in order to detect deadlocks and timelocks using the

finite quotient graph. Finally, a method for verifying TCTL properties is proposed and it

is demonstrated that TCTL model checking can be reduced to CTL model-checking using

strong time-abstracting bisimulation.

In the timed Kripke structures part, Chapter 5 is devoted to defining the time domain,

timed kripke structure, and zeno-free timed Kripke structure. The point-wise and continuous

semantics of TCTL are also described.

Abstraction methods such as GCD-transformation and τ -transformation for TCTLcb for-

mulas are introduced in Chapter 6. These methods reduce the model checking in continuous

semantics to the model checking in the point-wise semantics and then the TCTL model

checking procedures in point-wise semantics is described.

In Chapter 7, two methods to generate a compact Kripke structure equivalent with

a labeled transition system in the untimed domain are introduced. Then we discuss the

possibility of extending these methods which are inductive conversion methods to the dense

time domain. We prove that inductive conversion methods are infeasible in the dense time

domain by identifying several issues that make the inductive conversion methods impossible

in the dense time domain.



Chapter 2

Preliminaries

2.1 Process Theory

A process defines the behavior of a system, meaning a machine, a communication protocol,

an elementary particle, a network of falling dominoes, a chess player, or any other system.

Process theory is concerned with the analysis of processes. Two principal characteristics of

process theory are modeling and verification. Modeling is the task of describing processes

using mathematical structures in a system description language. Verification is the activity

of proving statements regarding processes for example, that the actual behavior of a system

is equal to its intended behavior. This is only possible if a criterion has been described,

specifying whether or not two processes are equal or behave similarly. Such a criterion

establishes the semantics of process theory, often based on an equivalence relation between

processes. Which aspects of the behavior of a system are of significance to a specific user

rely on the environment in which the system will be running and on the interests of the

specific user. Therefore it is not a duty of process theory to discover the ’true’ semantics of

processes, but rather to specify which process semantics is appropriate for which applications

[16].

A process algebra is an algebraic, formal description method for processes, particularly

suitable for the description of systems featuring communicating and concurrency. Many

process algebras have been expanded, including ACP [15], CCS [77], and CSP [59]. All

9
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process algebras have the following main properties: They are all compositional, they are

defined in terms of a Plotkin-style [87] structural operational semantics (SOS) that describes

the single-step execution capabilities of systems, and behavioural reasoning is accomplished

using equivalence relations (“same behaviour”) or preorders (“refinement”). An algebraic

process description can be “compiled” into a labeled transition system using the SOS.

A process-algebraic approach to system verification usually involves two process descrip-

tions. One of them is the system model which capture the design of the actual system, and

the other is the specification which illustrates the system’s desired “high-level” behavior.

One may then establish the correctness of the system model in terms of the specification

by demonstrating that the system model behaves as same as the specification (if using an

equivalence) or by proving that it refines the specification (if using a preorder).

2.2 Model Checking

Model checking implements an exhaustive search of the state space of the system to verify

whether some specification is observed by that system. The method will always report a

yes/no answer, and is fully algorithmic, with reasonable efficiency. In some circumstances

systems that are not finite-state may still be verified using model checking in combination

with abstraction and induction principles. Due to its algorithmic nature model checking is

preferable to deductive verification, whenever it can be applied. Model checking consists of

three steps: modelling the system under test into a suitable formalism, specifying the desired

properties of the system, and verifying the system against the specification. A negative

response (with the associated error trace) can result from an incorrect model, and incorrrect

specification, or an actual negative result (the system not observing the specification).

Compositional Verification The principal disadvantage of model checking is the state

explosion that can happen if the system being verified has many concurrent components,

case in which the number of global system states may increase exponentially with the number
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of processes.

One of the important approaches pursued to attack the state explosion problem is to

produce smaller and equivalent state spaces in terms of specific desired properties for in-

stance deadlock and accessibility. In this technique, irrelevant data can be removed so that

verification can be performed more efficiently.

Among methods for building equivalent state spaces, compositional verification is an

noteworthy and active research topic [34] [95][98] [102] [109]. Compositional verification

exploits the modular approach utilized in modem large-scale system designs. The primary

target of modularity is to decrease overall cost by letting modules to be designed indepen-

dently and in parallel. Moreover, modularity facilitates maintenance and re-usability of

computer software. Modules that are designed independently and in parallel can also be

analyzed in parallel.

Compositional verification was introduced by [58] [79] and introduces an algebraic treat-

ment of processes with synchronous communication as the primitive tools of interaction

among processes [79]. Equivalence and congruence of processes are well founded in process

algebras for event-based synchronous processes. A few papers [13] [41] [33] [75] [102] have

also addressed the general interest for asynchronous communication as the natural interac-

tion of processes. Several concurrency theories in process algebras can be utilized for the

analysis of asynchronous communication as well [63].

Reachability Current theories in compositional verification are extended mostly for event-

based systems without the intention of preserving state information (conditions). As a result,

current methods can not be utilized to efficiently analyze state-based properties. On the

other hand, state reachability has been assumed as an appropriate manner of analyzing

critical conditions of systems [81] such as mutual exclusion and buffer overflow. The state

reachability property also offers insights into the understanding of a systems. More im-

portantly, state reachability can facilitate the debugging and modification of an improper
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system design using compositional verification because of the fact that most of the event

occurrences are discarded by compositional verification methods in order to prepare a small

state space for analysis [63].

2.3 Temporal Logic

A successful method of verification is based on an appropriate formalism for determining

central aspects of the intended system behavior. In the case of sequential programs where the

input/output behavior together with termination plays a predominant role such formalisms

are traditionally relying on state transformer semantics. In fact, sequential programs are

usually verified by considering their partial correctness, determined with respect to pre-

conditions and post-conditions [50]. Reactive systems, on the other hand, are typically

non-terminating, as they maintain an ongoing interaction with the environment. Hence,

verification techniques based intrinsically on the existence of a final state are usually not

applicable and must be replaced by radically different approaches [65]. Pnueli [88] was the

first to propose the use of temporal logic as a language for the specification of concurrent

program properties. Temporal logics are tailored to expressing many important correctness

properties of reactive systems.

A temporal logics can specify the ordering of events in time without introducing time

explicitly. Most of them have an operator like G f that is true in the present if f is always

true in the future (i.e., if f is globally true). To assert that two events e1 and e2 never happen

at the same time, one would write G (¬e1 ∨ ¬e1). Temporal logics are often categorized

based on whether the time is assumed to have a linear or a branching structure [103]. The

“until” operator has been introduced to increase expressiveness and avoid in particular the

need of infinite sets of formulas to specify infinite behavior. The operator specifies that

property o should hold until a second property w holds. On the branching-time side this

lead to Computation Tree Logic (CTL) [36], while on the linear-time side this yields Linear

Temporal Logic (LTL) [88] [16].
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The temporal-logic model checking algorithms by Clarke and Emerson [36] in the early

1980s permitted this type of reasoning to be automated. Implementation of this method

is very efficient since checking that a single model satisfies a formula is much easier than

proving the validity of a formula for all models. The algorithm introduced by Clarke and

Emerson is suitable for the branching-time logic CTL. This algorithm is polynomial in both

the size of the model specified by the program under consideration and in the length of

its specification in temporal logic. They also showed that fairness [51] could be controlled

without changing the complexity of the algorithm. This was an essential improvement in that

the correctness of many concurrent programs based on some type of fairness assumption;

for instance, absence of starvation in a mutual exclusion algorithm may be based on the

assumption that each process makes progress infinitely often.

At the same time Quielle and Sifakis [91] proposed a model checking algorithm for a

subset of CTL, but they did not analyze its complexity. Later, an improved algorithm

with linear running time in the product of the length of the formula and the size of the

state transition graph was devised by Clarke, Emerson, and Sistla [37]. The algorithm was

implemented in the EMC model checker, which was widely utilized to check a number of

network protocols and sequential circuits [22] [23] [24] [37] [46] [80].

Alternative methods for verifying concurrent systems have been introduced by a number

of other researchers. Many of these techniques utilize automata for specifications as well as

for implementations. The implementation is checked to find whether its behavior conforms to

that of the specification. For both implementation and specification, the same type of model

is utilized, therefore, an implementation at one level can also be utilized as a specification

for the next level of refinement [53].

2.3.1 Computation Tree Logic

Computation Tree Logic (CTL) [14] [36] [47] belongs to the family of branching-time logics

and describes properties of a computation tree. The formulas are consist of path quantifiers
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and temporal operators. The path quantifiers specify the branching structure in the compu-

tation tree. There are two such quantifiers: A (for all computation paths) and E (for some

computation path). These quantifiers are utilized in a specific state to determine that all of

the paths or some of the paths starting at that state have a given property. The temporal

operators state properties of a path through the tree. There are five basic such operators:

• X “next time”: requires that a property holds in the second state of the path.

• F “eventually” or “in the future”: asserts that a property will hold in some state

on the path.

• G “always” or “globally” states that a property holds in every state on the path.

• U "until": holds if there is a state on the path where the second property holds, and

at every preceding state on the path, the first property holds.

• R “release”: is the logical dual of the U operator. It requires that the second property

holds along the path up to and including the first state where the first property holds;

however, the first property is not required to hold eventually.

Each of the temporal operators X, F, G, U, and R must be immediately preceded by

a path quantifier. This effectively defines ten CTL operators: AX, EX AF, EF AG, EG

AU, EU AR, and ER.

Each of the ten operators can be expressed using only the three operators EX, EG, and

EU as follows:

• AX f = ¬EX(¬f)

• EF f =E[TrueUf ]

• AG f = ¬EF(¬f)

• AF f = ¬EG(¬f)
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• A[f U g]≡ ¬E [¬g U (¬f ∧ ¬g)] ∧ ¬ EG¬ g

• A[f R g]≡ ¬E [¬f U ¬g]

• E[f R g]≡ ¬A [¬f U ¬g]

2.3.2 Timed Computation Tree Logic

TCTL extends CTL by introducing mechanisms to specify real-time properties.

Definition 1. Timed Computational Tree Logic (TCTL): Let I denote the set of

all intervals of R of the form [c, c′] , [c, c′), (c, c′], (c, c′) , (c,∞) and [c,∞) where c, c′ ∈ N. A

formula in TCTL [4] is described based on the following syntax:

φ ::= true |p| ¬φ |φ ∨ φ| ∃ φ UI φ | ∀ φ UI φ

where p ∈ Props is an atomic proposition and I ∈ I is an interval.

Let A be a timed automaton with Q the set of discrete states, and let P : Props 7→ 2Q

be a function associating a set of discrete states of A to each atomic proposition. TCTL

formulae are interpreted over states of A. Given a formula φ and a state s, the satisfaction

relation s |=p φ is defined inductively on the syntax of φ as in Figure 1 (where the subscript

p is omitted for simplicity).

The following abbreviations are also defined:

∃ FIφ
def
= ∃ true UI φ ∀ GIφ

def
= ¬∃ FI ¬φ

∀ FIφ
def
= ∀ true UI φ ∃ GIφ

def
= ¬∀ FI ¬φ

The notation for intervals is often simplified. For example ∃F≤5 φ is often used instead of

∃F[0,5] φ, and ∀Gφ instead of ∀G[0,∞)φ.

It is said that the TA A satisfies a formula φ if the initial state of A satisfies φ.

CTL [36] can be described as the untimed fragment of TCTL, containing all formula

with trivial subscript interval [0,∞).
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Figure 2.1: TCTL satisfaction.

2.3.3 Transition Systems

Transition systems are often used as models explaining system behavior. They are directed

graphs where nodes introduce states and edges model transitions i.e., state changes. We

use a general form of transition systems were transitions are labeled with action names and

atomic propositions are associated with states. Action names represent communication and

we often use letters at the beginning of the Greek alphabet (α, β and so on) to denote actions.

We use atomic propositions to specify temporal properties. Intuitively atomic propositions

describe simple known facts about the states of the system under consideration. We often

use arabic letters from the beginning of the alphabet (a, b, c, etc.) to refer to atomic

propositions.

Definition 2. Transition System (TS):: A transition system TS is a tuple (S,Act,→

, I, AP,L) where S is a set of states, Act is a set of actions, →⊆ S ×Act× S is a transition

relation, I ⊆ S is a set of initial states, AP is a set of atomic propositions, and L : S → 2AP

is a labeling function.

TS is called finite if S, Act, and AP are finite. The transition system starts in some
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initial state s0 ∈ I and evolves according to the transition relation →. That is, if s is the

current state, then a transition s α→ s′ originating from s is selected non-deterministically

and performed, meaning that the action α is performed and the transition system evolves

from state s into the state s′. This process is repeated in s′ and finishes once no outgoing

transitions are available.

The labeling function L associates a set L(s) ∈ 2AP of atomic propositions to any state

s. Intuitively L(s) intuitively contains exactly all the atomic propositions a ∈ AP that are

true in state s . Given a propositional logic formula Φ, s satisfies the formula Φ whenever

the evaluation induced by L(s) makes the formula Φ true; that is, s |= Φ iff L(s) |= Φ.

2.4 Finite Automata

A finite automaton is a mathematical model of a device that has access to a constant amount

of memory, independent of the size of its input. We will consider finite automata over finite

words and finite automata over infinite words (also called ω-automata).

2.4.1 Automata on Finite Words

Definition 3. Nondeterministic Finite Automaton (NFA): A nondeterministic finite

automaton (NFA) A is a tuple A = (Q, Σ, δ, Q0, F ) where, Q is a finite set of states, Σ is

an alphabet, δ : Q× Σ → 2Q is a transition function, Q0 ⊆ Q is a set of initial states, and

F ⊆ Q is a set of accepting (or final) states.

The size |A| of A is the number of states and transitions in A, i.e.,

|A| = |Q|+
∑
q∈Q

∑
A∈Σ

|δ (q,A)| (2.1)

Σ defines the symbols on which the automaton is defined. The (possibly empty) set

Q0 defines the states in which the automaton may start. The transition function δ can be

identified with the relation →⊆ Q× Σ×Q given by

q
A→ q′ iff q′ ∈ δ (q,A) (2.2)
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Thus, often the notion of transition relation (rather than transition function) is used for

δ. Intuitively, q A→ q′ denotes that the automaton can move from state q to state q′ when

reading the input symbol A.

Definition 4. Runs, Accepted Language of an NFA: Let A = (Q, Σ, δ, Q0, F ) be

an NFA and w = A1...An ∈ Σ∗ a finite word. A run for w in A is a finite sequence of states

q0q1...qn such that

q0 ∈ Q0 and qi
Ai+1−→ qi+1 for all 0 ≤ i < n.

Run q0q1...qn is called accepting if qn ∈ F . A finite word w ∈ Σ∗ is called accepted by

A if there exists an accepting run for w. The accepted language of A, denoted L (A) is the

set of finite words in Σ∗ accepted by A, i.e.,

L (A) = {w ∈ Σ∗| there exists an accepting run for w in A}

An equivalent alternative characterization of the accepted language of an NFA A is as

follows. Let A be an NFA as above. We extend the transition function δ to the function

δ∗ : Q× Σ∗ → 2Q as follows: δ∗ (q, ε) = {q} and δ∗ (q, A) = δ (q, A) and

δ∗ (q, A1A2...An) =
⋃
p∈δ(q,A1) δ

∗ (p,A2...An)

δ∗ (q,w) is the set of states that are reachable from q for the input word w.

In particular,
⋃
q0∈Q0

δ∗ (q0,w) is the set of all states where a run for w in A can end.

If one of these states is final, then w has an accepting run. Vice versa, if w /∈ L (A), then

none of these states is final. Hence, we have the following alternative characterization of the

accepted language of an NFA by means of the extended transition function δ∗:

Definition 5. Alternative Characterization of the Accepted Language: Let

A be an NFA. Then:

L (A) = {w ∈ Σ∗|δ∗ (q0,w) ∩ F 6= ∅ for some q0 ∈ Q0}

It can be shown that exactly all the language accepted by nondeterministic finite automata

are regular languages [12].
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Emptiness A fundamental issue in automata theory is to decide for a given NFA A

whether its accepted language is empty, i.e., whether L (A) = ∅ . This is known as the empti-

ness problem. From the acceptance condition, it follows directly that L (A) is nonempty if

and only if there is at least one run that ends in some final state. Thus, nonemptiness of

L (A) is equivalent to the existence of an accept state q ∈ F which is reachable from an

initial state q0 ∈ Q0. This can easily be determined in time O (|A|) using a depth-first

search traversal that encounters all states that are reachable from the initial states and

checks whether one of them is final. For state q ∈ Q, let Reach (q) =
⋃

w∈Σ∗ δ
∗ (q,w) that

is, Reach (q) is the set of states q′ that are reachable via an arbitrary run starting in state q.

Proposition 1. Language Emptiness is Equivalent to Reachability: Let A =

(Q, Σ, δ, Q0, F ) be an NFA. Then, L (A) 6= ∅ if and only if there exists q0 ∈ Q0 and q ∈ F

such that q ∈ Reach (q0) [12]

Definition 6. Deterministic Finite Automaton (DFA): Let A = (Q, Σ, δ, Q0, F )

be an NFA. A is called deterministic if |Q0| ≤ 1 and |δ (q,A)| ≤ 1 for all states q ∈ Q and

all symbols A ∈ Σ. We will use the abbreviation DFA for a deterministic finite automaton.

DFA A is called total if |Q0| = 1 and |δ (q,A)| = 1 for all q ∈ Q and all A ∈ Σ.

An NFA is deterministic if it has at most a single initial state and if for each symbol A

the successor state of each state q is either uniquely defined if |δ (q,A)| = 1 or undefined

if |δ (q,A)| = ∅. Total DFAs provide unique successor states, and thus, unique runs for

each input word. Any DFA can be turned into an equivalent total DFA by simply adding

a non-final trap state, qtrap say, that is equipped with a self-loop for any symbol A ∈ Σ.

From any state q 6= qtrap, there is a transition to qtrap for any symbol A for which q has no

A-successor in the given non-total DFA.

Total DFA are often written in the form A = (Q, Σ, δ, q0, F ) where q0 stands for the

unique initial state and δ is a (total) transition function δ : Q×Σ→ Q. Also, the extended

transition function δ∗ of a total DFA can be viewed as a total function δ∗ : Q × Σ∗ → Q
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which for given state q and finite word w returns the unique state p = δ∗ (q,w) that is

reached from state q for the input word w. In particular, the accepted language of a total

DFA A = (Q, Σ, δ, q0, F ) is given by

L (A) = {w ∈ Σ∗| δ∗ (q0,w) ∈ F}

The observation that total DFAs have exactly one run for each input word allows comple-

menting a total DFA A by simply declaring all states to be final that are nonfinal in A and

vice versa[12].

2.4.2 Automata on Infinite Words

Finite-state automata accept finite words, i.e., sequences of symbols of finite length, and yield

the basis for checking regular safety properties. These ideas are generalized to formalize the

requirements for realistic systems. Infinite words over the alphabet Σ are infinite sequences

A0A1A2 . . . of symbols Ai ∈ Σ. Σω denotes the set of all infinite words over Σ. Any subset

of Σω is called a language of infinite words, sometimes also called an ω-language [12].

Because most concurrent systems are designed not to halt during normal execution,

we model computations as infinite sequences of states. These automata have the same

structure as finite automata over finite words. However, they recognize words from Σω,

where the superscript ω indicates an infinite number of repetitions. The simplest automata

over infinite words are Büchi automata [28]. A Büchi automaton has the same components

as an automaton over finite words. However, F is called the set of accepting states, rather

than final states [53].
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Timed Automata
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Chapter 3

Verification of Real-Time Systems

Ensuring the correctness of the computer system is a challenging task in life-critical systems

especially when the correctness of an action depends not only on the action itself, but also

on the actual time when the action is executed (such as in a pacemaker system). Computers

are widely utilized in critical applications where predictable response times are vital for

correctness. Such systems are called real-time systems; examples include aircraft controllers

and industrial machinery. Because of the nature of such applications, errors in real-time

systems can be very perilous or even fatal. Guaranteeing the correctness of a complex

real-time system is therefore an important (and also nontrivial) task.

Two time semantics are defined for the description of real-time systems. Discrete time

[10] specifies that all the time readings are integers and all clocks increment their readings

at the same time. The other choice is dense time [7], which means that time readings can

be rational numbers or real numbers and all clocks increment their readings at a uniform

rate.

3.1 Discrete-Time Systems

When time is discrete, possible clock values are positive integers, and events can only happen

at integer time values. This type of model is sufficient for synchronous systems, where all of

the components are synchronized to a single global clock. The duration between successive

22
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clock ticks is selected as the basic unit for measuring time. This model has been used for

many years for reasoning regarding the correctness of synchronous hardware designs.

In discrete-time models, there is a single global clock. Therefore, there is a simple and

explicit way [66] to support it: introduce a clock variable “now” whose value shows the

current time, and model the passage of time with a “tick” action that increment the variable

now. Timing bounds on actions are then determined with one of the following three types of

timer variables: a countdown timer which is decreased by the tick action, a count-up timer

which is decremented by a tick, and an expiration timer which remains unchanged by any

tick. A countdown or count-up timer expires when its value overtakes some specified value;

an expiration timer expires when its value minus now overtakes some value. An upper-

bound timing constraint on when an action A must happen is represented by an enabling

condition on the tick action that violating the condition by a time increment is forbidden.

A lower-bound constraint on when A may happen is represented by an enabling condition

on A that forbids it from being executed earlier than it should be.

Alternative methods consist of quantitative temporal analyses for discrete-time systems

[48] [31]. These approaches expand CTL with a bounded until operator [48] in order to

support the specification of timing constraints between two actions. For instance, it is

always true that pmay be followed by q within 3 time units. CTL model checking verification

algorithms are then extended. Symbolic model can be combined with this solution to increase

scalability [31].

In discrete time modeling one needs to select some fixed fixed time quantum such that

any delay between any two events will be a multiple of this quantum. This in turn restricts

the accuracy of the modeling process [53]. The selection of an appropriately small time

quantum may also blow up the state space in such a way that verification can no longer be

done.
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3.2 Dense-Time Systems

Dense time is the natural model for asynchronous systems because the separation of events

can be arbitrarily small. This ability helps specifying causally independent events in an

asynchronous system. Moreover, no assumptions is required regarding the speed of the

events offered by the environment.

Various models of dense-time (also called continuous time) have been introduced [3] [45]

[57] [68] [93] [97] [112] [113]. Examples include timed automata [8] [74], Timed Process

Algebra [110] [92] [96] , Timed Interval Calculus [49], Timed Statecharts [61], and so on.

The timed automata model of Alur, Courcoubetis, and Dill [27] [45] has become the

standard modeling technique in designing real-time models. Timed Automata are finite state

machines provided with clock variables (ranging over rational numbers). The passing of time

is implemented by updates to clock variables. The execution of the model can be restricted

by guard expressions involving clocks. This is actually a general procedure to annotate state

transition graphs with timing constraints using finitely many rational-valued clock variables.

To achieve a finite representation for the infinite state space thus generated abstraction

methods such as clock regions [3], clock zones [45] [111], and bisimulation equivalence can

be used. Many efficient verification tools for timed automata have been developed based

on these methods. Examples include UPPAAL [69], KRONOS [21], RED [106], Timed

COSPAN [99], and Rabbit [17].

3.3 Equivalence and Abstraction

There are two approaches to system verification. The first is equivalence checking, which

aims to establish some semantic equivalence between two systems, one of which correspond-

ing to the implementation of the specification given by the other. The second approach is

and model checking, which aims to specify whether a given system satisfies some property

which is usually given in some modal or temporal logic [16]. In order to prevent the state
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explosion problem, developing techniques such as abstraction and bisimulation equivalence

aim to replace a large structure by a smaller structure which satisfies the same properties.

The abstraction is realized by giving a mapping between the actual data values in the system

and a small set of abstract data values. The goal of bisimulation equivalence is to identify

transition systems with the same branching structure, and which thus can simulate each

other in a stepwise manner.

3.3.1 Linear Time and Branching Time Concurrency Semantics

As many as 12 semantics can be defined on uniform concurrency, as shown in Figure 3.1. The

coarsest one is trace semantics [58], where the only feature considered is the (partial) trace.

The finest semantics is bisimulation [76]. Bisimulation semantics is the standard seman-

tics for the process algebra CCS. Bisimulation equivalence is a refinement of observational

equivalence, as shown by Hennessy and Milner [55]. On the domain of finitely branching,

concrete, sequential processes, both equivalences coincide. The semantics of De Bakker and

Zucker, introduced in [40], also coincides with bisimulation semantics on this domain.

Ten semantics are in between. First, different types of trace semantics can be achieved

by utilizing complete traces besides partial ones. Failures semantics is proposed in Brookes,

Hoare and Roscoe [59], and utilized in the construction of a model for the process algebra

CSP [58]. It is finer than complete trace semantics. Testing equivalence as introduced in

De Nicola and Hennessy [43] coincides with failures semantics on the domain of finitely

branching, concrete, sequential processes, as do the semantics of Kennaway [64] and Daron-

deau [39]; this has been established in De Nicola [42]. In Olderog and Hoare [83] readiness

semantics is introduced, which is slightly finer than failures semantics. Between readiness

and bisimulation semantics one identifies ready trace semantics, as proposed independently

in Pnueli [89] (there called barbed semantics), Baeten, Bergstra and Klop [11] and Pomello

[90] (under the name exhibited behaviour semantics).

The natural completion of the “square” suggested by failures, readiness and ready trace
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Figure 3.1: The linear time–branching time spectrum [16].
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semantics yields the failure trace semantics. For finitely branching processes, this is the

same as refusal semantics, proposed in Phillips [86]. Simulation semantics, based on the

classical notion of simulation by Park [85], is independent of the last five semantics. Ready

simulation semantics was proposed in Bloom, Istrail and Meyer [18] under the name GSOS

trace congruence. It is finer than ready trace as well as simulation semantics. In Larsen

and Skou [70] a more operational characterization of this equivalence was given under the

name 2
3 -bisimulation equivalence. The notion of possible worlds semantics of Veglioni and

De Nicola [104] fits between ready trace and ready simulation semantics. FInally, 2-nested

simulation semantics, proposed in Groote and Vaandrager [52], is set between ready simu-

lation and bisimulation semantics, and possible-futures semantics, as introduced in Rounds

and Brookes [94], can be located between 2-nested simulation and readiness semantics, Tree

semantics, employed in Winskel [108], is even finer than bisimulation semantics. However,

this semantics needs more than mere action relations [16].

3.3.2 Abstraction

Verification methods based on abstraction seems to be essential for reasoning about cir-

cuits that contain data paths or concurrent programs that include complex data structures.

Finite-state verification approaches have been utilized mainly for control-oriented systems.

The symbolic methods handle some systems that involve nontrivial data manipulation, but

it has high complexity of verification. Data abstraction is based on the observation that the

specifications of systems that contain data paths involve fairly simple relationships among

the data values in the system. For example, verifying the addition operation in a micropro-

cessor only involves three registers (the value in one register needs to finally be equal to the

sum of the values in two other registers). In such situations, abstraction can be utilized to

decrease the complexity of model checking. Abstraction is accomplished by giving a map-

ping between the actual data values in the system and a small set of abstract data values.

By developing the mapping to states and transitions, it is possible to generate an abstract
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version of the system under consideration. The abstract system is much smaller than the

actual system, and properties at the abstract level are easier to verify. Clarke, Grumberg,

and Long demonstrate that in such a mapping any properties expressible in the logic ACTL

that are satisfied by the abstract system will also be true of the actual system [38] [73].

Abstraction is a very important technique for decreasing the state explosion problem.

Two main abstraction techniques exist namely, the cone of influence reduction and data

abstraction. Both of these methods are executed on a high level description of the system,

before the model for the system is built. Thus, we prevent the generation of the unreduced

model that might be too big to fit into memory. The cone of influence reduction tries to

reduce the size of the state transition graph by focusing on the variables of the system that

are referred to in the specification. The abstraction is achieved by eliminating variables

that do not affect the variables in the specification. The properties of interest are thus

maintained, but the size of the model that needs to be verified is smaller. Data abstraction

on the other hand involves discovering a mapping between the actual data values in the

system and a small set of abstract data values. By developing this mapping to states and

transitions, it is possible to achieve an abstract system that simulates the original system

and is much smaller [53].

3.3.3 Bisimulation Equivalence

The only relations that maintain branching-time behavior are bisimulation equivalence and

simulation preorder. Bisimulation relates states that mutually mimic all individual transi-

tions, while simulation requires that one state can mimic all stepwise behavior of the other,

but not the reverse. Bisimulation equivalence is a technique that replaces a large structure

with a smaller structure which satisfies the same properties. More generally, given a logic L

and a structure M, the goal is to find a smaller structure M′ that satisfies exactly the same

set of formulas of the logic L as M [53].

Bisimulation identifies transition systems with the same branching structure, and which
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thus can simulate each other in a stepwise manner. A transition system TS′ can simulate

transition system TS if every step of TS can be matched by one (or more) steps in TS′.

Bisimulation is first introduced as a binary relation between transition systems over the

same set of atomic propositions; later on, bisimulation is also treated as a relation between

states of a single transition system. Bisimulation is proposed as the largest relation satisfying

certain properties [12].

Definition 7. Direct Successors: Let TS = (S, Act, →, I, AP, L), be a transition

system. For s ∈ S and α ∈ Act, the set of direct α-successors of s is defined as:

Post (s, α) =
{
s′ ∈ S | s α→ s′

}
, Post (s) =

⋃
α∈Act Post (s, α) .

Definition 8. Bisimulation Equivalence: Let TSi = (Si, Acti, →i, Ii, AP, Li) , i =

1, 2, be transition systems over AP . A bisimulation for (TS1,TS2) is a binary relation

R ⊆ S1 × S2 such that:

1. ∀s1 ∈ I1 (∃ s2 ∈ I2. (s1, s2) ∈ R) and ∀s2 ∈ I2 (∃ s1 ∈ I1. (s1, s2) ∈ R) .

2. For all (s1, s2) ∈ R it holds that:

(a) L1 (s1) = L2 (s2)

(b) If s′1 ∈ Post (s1) then there exists s′2 ∈ Post (s2) with (s′1, s
′
2) ∈ R.

(c) If s′2 ∈ Post (s2) then there exists s′1 ∈ Post (s1) with (s′1, s
′
2) ∈ R.

TS1 and TS2 are bisimulation-equivalent (bisimilar, for short), denoted TS1 ∼ TS2, if there

exists a bisimulation R for (TS1,TS2). ∼ is an equivalence relation (reflexive, transitive,

and symmetric).

Condition (1) declares that every initial state of TS1 corresponds to an initial state of

TS2 and vice versa. According to condition (2a), the states s1 and s2 are equally labeled.

This ensures the local equivalence of s1 and s2. Condition (2b) states that every outgoing



CHAPTER 3. VERIFICATION OF REAL-TIME SYSTEMS 30

transition of s1 must be matched by an outgoing transition of s2; the reverse is stated in

(2c).

Bisimulation is defined with respect to the direct successors of states. A relation between

(finite or infinite) paths can be achieved using an inductive argument.

Definition 9. Bisimulation on Paths: Let TS1 and TS2 be transition systems over AP ,

R a bisimulation for (TS1,TS2), and (s1, s2) ∈ R. Then for each (finite or infinite) path

π1 = s0,1s1,1s2,1... ∈ Paths (s1) there exists a path π2 = s0,2s1,2s2,2... ∈ Paths (s2) of the

same length such that (sj,1, sj,2) ∈ R for all j.

By symmetry, for each path π2 ∈ Paths (s2) there exists a path π1 ∈ Paths (s1) of the

same length which is statewise related to π2. As one can construct statewise bisimilar paths,

bisimilar transition systems are trace-equivalent. Most of the time it is simpler to demon-

strate that two transition systems are bisimilar rather than prove their trace equivalence.

The intuitive reason for this discrepancy is that proving bisimulation equivalence just needs

local reasoning about state behavior instead of considering entire paths.

Proposition 2. Bisimulation and Trace Equivalence: TS1 ∼ TS2 implies

Traces (TS1) = Traces (TS2).

Bisimulation can also be defined as a relation among states within a single transition

system. By considering the quotient transition system under such a relation, smaller models

are achieved. This minimization recipe can be used for efficient model checking.

Definition 10. Bisimulation Equivalence as Relation on States: Let TS =

(S, Act, →, I, AP, L) be transition systems. A bisimulation for TS is a binary relation R

on S such that for all (s1, s2) ∈ R :

1. L (s1) = L (s2)

2. If s′1 ∈ Post (s1) then there exists an s′2 ∈ Post (s2) with (s′1, s
′
2) ∈ R.

3. If s′2 ∈ Post (s2) then there exists s′1 ∈ Post (s1) with (s′1, s
′
2) ∈ R.
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States s1 and s2 are bisimulation-equivalent (or bisimilar), denoted s1 ∼TS s2, if there

exists a bisimulation R for TS with (s1, s2) ∈ R [12].

3.3.4 Decidability on Bisimulation-Based and Failure-Based Equivalences

In compositional verification methods the execution time depends on state-space complexity

and time complexity of the reduction algorithms. The state-space complexity of algorithms

in particular dramatically influences the execution time because the size of a composite state

space is specified by the size (complexity) of condensed state spaces utilized in the composi-

tion. Bisimulation-based [79] and failure-based [58] equivalences are famous in contemporary

process algebras for the compositional verification of concurrent systems.

Definition 11. Timed trace equivalence: Two states q and q′ of a timed automaton

A are time trace equivalent, written q ≡tt q′ , iff , q and q′ are trace equivalent with respect

to the timed transition system St (A). That is, two states are timed trace equivalent iff they

generate the same timed words i.e., sequences of input symbols and time increments.

As expected, timed trace equivalence is strictly weaker than timed bisimilarity but in-

comparable to region equivalence and incomparable to untimed bisimilarity. While timed

trace equivalence is a congruence, it is computationally intractable. The undecidability

proof for ≡tt follows the proof that the language inclusion problem for timed automata over

infinite words is undecidable [8].

Proposition 3. Decidability on Timed trace equivalence: The problem of deciding

if two initial states of a timed automaton are timed trace equivalent is undecidable [62].

Bisimulation [78] is a widely used relation to assert equivalence of two systems. The

technique has been developed to timed systems as well. Timed bisimulation was first proved

to be decidable for timed automata by Cerans utilizing a product construction method on

region graphs. It is also known that timed language equivalence is undecidable for timed

automata [8].
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Bisimulation equivalences are significantly important for timed automata because they

have been shown to be decidable [32] [1] [71] [107]. Both timed and time abstracted bisimula-

tions are decidable for timed automata. Timed bisimulation was first proved to be decidable

in [32] where a product construction method on region graph was utilized. In [107] the

product construction has been used on zones which makes the procedure for deciding timed

bisimulation invariant to scaling. Deciding timed bisimulation by applying open maps to

then use zone valuation graph is also possible [60]. The decidability of time abstracted bisim-

ulation is inherent in the construction of the zone valuation graph. However a very similar

approach for deciding time abstracted bisimulation has earlier been utilized [101] [54]. The

methods proposed in [32] [107] use complex product constructions on region graphs and zone

graphs respectively.



Chapter 4

Verification of Timed Automata
Using Time-Abstracting Bisimulation

We now consider the verification of dense-time systems modeled as timed automata. In this

approach, given a timed system A, we construct a finite graph G which captures the behav-

ior of A whereas the exact time delays are abstracted away. Then, an untimed verification

methods on G is utilized in order to prove properties on A. The branching-time logic TCTL

as property-specification languages is considered. Model checking A against properties rec-

ognized as TCTL formulae comes down to using, CTL model-checking algorithms on G.

The abstraction of exact delays is formalized under the concept of time-abstracting bisimu-

lations. Three time-abstracting bisimulations can be defined which have different reduction

power. The stronger of them keep both linear and branching-time properties, while two

weaker ones keep only linear-time properties. The finite graph G is the quotient of A with

respect to a time-abstracting bisimulation. Producing G can be performed by adapting a

partition-refinement algorithm to the timed case. The adapted algorithm is symbolic that

is, equivalence classes are shown as simple polyhedra. When these polyhedra are not con-

vex, operations become expensive; therefore a different partition-refinement technique that

preseves convexity is also needed.

33
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4.1 Timed Automata

Timed automata [4] [57] are hereby to model timed systems. These are finite-state automata

equipped with clocks used to specify constraints on the amount of time that can elapse

between two events.

Definition 12. Clocks and valuations: A clock is a variable ranging over R, the set

of non-negative reals. Given a set of clocks X = {x1, ..., xn}, an X -valuation is a function

v : X 7→ R. The set of all valuations is RX . 0 is the valuation that assigns zero to all clocks.

For X ⊆ X ,v [X := 0] (reset X to zero) is the valuation v1 such that ∀x ∈ X.v1 (x) = 0

and ∀x /∈ X.v1 (x) = v (x). For δ ∈ R,v + δ (time elapse by δ) is the valuation v2 such

that ∀x ∈ X .v2 (x) = v (x) + δ.

Definition 13. Hyperplanes and polyhedra : An atomic constraint on X is an

expression of the form x ∼ c or x − y ∼ c, where x, y ∈ X ,∼∈ {<,≤,≥, >} and c ∈ N

is a natural constant. An X - valuation v satisfies the constraint x ∼ c if v (x) ∼ c; v

satisfies x− y ∼ c if v (x)− v (y) ∼ c. An X - hyperplane is a set of valuations satisfying an

atomic clock constraint. The class HX of X -polyhedra is described as the smallest subset

of 2R
X , which contains all X -hyperplanes and is closed under set union, intersection and

complementation. The following notation is utilized for polyhedra: we write x < 5 for the

hyperplane defined by the constraint x < 5, x < 5∧ y = 2 for the polyhedron defined as the

intersection of x < 5 and y = 2, and so on. We also write true for RX , false for ∅, and zero

for {0}.

A polyhedron ζ is convex if it is the intersection of a number of hyperplanes. If ζ is

non-convex then it can be written as ζ1 ∪ ... ∪ ζk, where ζ1, ..., ζk are all convex.

Definition 14. Timed Automata: A timed automaton (TA) [4] [57] is a tuple A =

(X , Q, q0, E, invar), where X is a finite set of clocks, Q is a finite set of discrete states, q0 ∈

Q being the initial discrete state. E is a finite set of edges of the form e = (q, ζ, a, X, q′),

with q, q′ ∈ Q the source and target states. Edges are labeled with a discrete actions or



CHAPTER 4. TIMED AUTOMATA AND TIME-ABSTRACTING BISIMULATION. 35

a time delay action a in order to model the discrete state transitions and time transitions

between source and target states in TA. σ is used for the passage of time transitions and e

is utilized for the discrete state transitions. ζ is a conjunction of atomic constraints on X

defining a convex X -polyhedron, called the guard of e. X ⊆ X is a set of clocks to be reset

upon crossing the edge. invar is a function associating with each discrete state q a convex

X -polyhedron called the invariant of q.

Given an edge e = (q, ζ, a, X, q′), we write source (e), target (e), guard (e), label (e) and

reset (e) for q, q′, ζ, a and X, respectively. Given a discrete state q, we write in (q) (resp.

out (q)) for the set of edges of the form (−,−,−,−, q) (resp. (q,−,−,−,−)). We assume

that for each e ∈ out (q), guard (e) ⊆ invar (q).

For a given TA A, we define cmax (A) to be the greatest natural constant appearing in

an atomic constraint of a guard or an invariant of A.

Definition 15. States: A state of A is a pair (q,v), where q ∈ Q is a discrete state, and

v ∈ invar (q) is a valuation satisfying the invariant of q. We write discrete (s) to denote q,

the discrete part of s. The initial state of A is s0 = (q0, 0).

Definition 16. Transitions: Consider a state (q,v). Given an edge e = (q, ζ, a, X, q′)

such that v ∈ ζ and v′ = v [reset (e) := 0] ∈ invar (q′) , (q,v)
e→ (q′,v′) is a discrete transi-

tion of A. (q′,v′) is called the e-successor of (q,v).

A time transition from (q,v) has the form (q,v)
δ→ (q,v + δ), where δ ∈ R and v + δ ∈

invar (q). For a state s = (q,v), we simply write s+ δ instead of (q,v + δ). s+ δ is the δ -

successor of s. The concatenation of two time transitions s δ→ s+ δ and s+ δ
δ′→ s+ δ + δ′

is a time transition s
δ+δ′→ s + δ + δ′. Inversely, due to the dense nature of the reals, a

time transition s δ→ s + δ can be split into any number m of consecutive time transitions

s
δ1→ s+ δ1

δ2→ ...
δm→ s+ δ , such that δ1 + δ2 + ...+ δm = δ. We write s δ→ e→ s′ if s δ→ s+ δ

is a time transition and s+ δ
e→ s′ is a discrete transition.

Two types of semantics are associated with a TA: a branching-time semantics with respect
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to a labeled graph and a linear-time semantics in terms of executions.

Definition 17. Semantic graph: The semantic graph of A, indicated by GA, is defined

to be the graph which has the states of A as nodes and two kinds of edges, related to the

discrete and time transitions of A. GA has an uncountable set of nodes and uncountable

branching.

Definition 18. Runs: A run of A starting from state s is a finite or infinite sequence

ρ = s1
δ1→ s1 + δ1

e1→ s2
δ2→ s2 + δ2

e2→ ..., such that s1 = s and for all i = 1, 2, ..., si + δi is

the δ - successor of si and si+1 is the ei - successor of si + δi. That is, a run is a path in

the semantic graph of A where discrete transitions are taken infinitely often and consecutive

time transitions are concatenated. We denote si by ρ (i) , δi by delay (ρ, i), and
∑

j<i δj by

time (ρ, i). The limit of the sequence time (ρ, i) as i→∞ is denoted time (ρ, i).

Definition 19. Reachable states: A state s is reachable if there exists a finite run

s0
δ0→ e0→ ...

δk→ ek→ sk
δ→ s , where s0 = (q0, 0) is the initial state, and k ∈ N.

A parallel composition operator for timed automata is required in order to explain sys-

tems made up of different components. We do not provide a formal definition of this operator

in this thesis but more information can be found in [100]. The model of parallelism is based

on synchronous passage of time for all components and interleaving of discrete actions. Com-

munication is modeled via transition synchronization. Given automata A1 ,. . . , Ak, their

parallel composition is denoted by A1 ||. . . || Ak.

Definition 20. Symbolic states and operations: A set of states of a timed automaton

A is called a symbolic state. A zone is a symbolic state S such that:

1. All states of S are associated with the same discrete state, i.e., for all s, s′ ∈ S,

discrete(s) =discrete(s′); and

2. The set of valuations {v | ∃ (q,v) ∈ S} is a convex X - polyhedron ζ.
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(q, ζ) is often used for the zone S. Also, false is utilized to denote the empty zone.

Let S be a symbolic state and e an edge of A. The following operations on S are defined:

disc-pred(e, S)
def
=
{
s | ∃ s′ ∈ S. s e→ s′

}
time-pred(S)

def
=
{
s | ∃ s′ ∈ S, δ ∈ R. s

δ→ s′
}

That is, disc-pred(e, S) is the set of all e-predecessors of states in S and time-pred(S) is the

set of all time-predecessors of states in S. According to these definitions, if S is a zone then

time-pred(S) and disc-pred(e, S) are also zones, meaning that zones are preserved by the

above predecessor operations.

4.2 Time-Abstracting Bisimulation

The timed automata utilize a dense time domain which results in an infinite state space.

Time-abstracting bisimulations technique reduce the state space of given timed automata

into a finite graph (the quotient graph) which preserves sufficient information for verification.

The idea behind time-abstracting bisimulations is to refine the dense state space only as much

as necessary. Exact time delays are abstracted away from the quantitative aspect of time

(we know that some time passes but not how much) while information on the discrete-state

changes of the system is retained.

There are three time-abstracting bisimulations methods namely, strong, delay and obser-

vational, which are strictly arranged in terms of their reduction power. Various properties

can be preserved by these three types of time-abstracting bisimulations. The strong one

preserves both linear and branching-time properties, whereas the two weaker ones keep only

linear-time properties. In this thesis the strong time-abstracting bisimulation is considered

because we use TCTL as property-specification languages, which in turn uses a branching-

time semantics.

Definition 21. Strong time-abstracting bisimulation: Consider a TA A with set
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Figure 4.1: Strong Time-Abstracting Bisimulations [101].

of edges E. A binary relation ≈ on the states of A is a strong time-abstracting bisimulation

(STaB) if for all states s1 ≈ s2, the following conditions hold:

1. If s1
e1→ s3, for some e1 ∈ E, then there exists e2 ∈ E such that s2

e2→ s4 and, s3 ≈ s4.

2. If s1
δ1→ s3, then there exists δ2 ∈ R such that s2

δ2→ s4 and s3 ≈ s4.

3. The above conditions also hold if the roles of s1 and s2 are reversed.

The definition is illustrated in Figure 4.1. The states s1 and s2 are called STa-bisimilar.

In general, two TA A1 and A2 are called STa-bisimilar if there exists a STaB ≈ on the states

of A1 and A2, such that s1
0 ≈ s2

0, where si0 is the initial state of Ai.

There is always a STaB definable on any automaton namely, the identity relation. There

might be many various STaBs but we usually will be interested in the greatest STaB, with

respect to the relation inclusion, that is, the STaB which induces the smallest number of

equivalence classes. This STaB is unique.

Sometimes it is beneficial to consider only STaBs that distinguish specific states, such as

states satisfying various atomic propositions. For this purpose, let Props be a set of atomic

propositions and let P be a function associating to each proposition a set of states of the

automaton. A STaB ≈ respects P if for any pair of states s1; s2 such that s1 ≈ s2, for all

P ∈ Props, s1 ∈ P (p) iff s2 ∈ P (p).
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Figure 4.2: Two time-abstracting bisimilar systems. [101].

Definition 22. Time-abstracting quotient graphs: Let ≈ be the greatest STaB on

a TA A. The ≈-quotient graph of A is defined as the graph whose nodes are the classes

induced by the STaB and whose edges are of two types:

• C1
e→ C2, for some edge e of A, if there exists some state in C2 which is an e-successor

of some state in C1;

• C1
τ→ C2, where τ is a label denoting time elapse, when C2 is the immediate time

successor of C1. Formally:

∃s1 ∈ C1, s2 ∈ C2, δ ∈ R. s1
δ→ s2 ∧ ∀δ′ < δ. s1 + δ′ ∈ C1 ∪ C2.

In what follows we write C1→C2 for two classes C1 and C2 if either C1
τ→ C2 or C1

e→ C2

for some edge e.

Figure 4.2 illustrates the STa-quotient of the TA which is the graph G in the middle of

the figure, whose nodes are the symbolic states. They are in fact zones, which are displayed

on the right.

Definition 23. Zeno behaviour: An infinite path of a transition system of a timed

automaton is zeno if and only it is time convergent and the number of actions executed

along path is infinite. A timed automaton is non-zeno if and only if none of its initial states

have any zeno path.
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Definition 24. Properties of time-abstracting bisimulations: Two main proper-

ties of TaBs will be utilized in demonstrating how TA model-checking can be reduced to

model-checking in finite graphs (Ta-quotients):

1. Pre-stability: Consider a TA A, a TaB ≈ on A and two classes C1 and C2 in the

≈-quotient graph of A. Then, by definition:

• If C1
τ→ C2 then for each state s1 ∈ C1 there exists s2 ∈ C2 such that s1

δ→ s2,

for some δ ∈ R.

• If C1
e→ C2 for some edge e, then if ≈ is a TaB then for each state s1 ∈ C1 there

exists s2 ∈ C2 such that s1
e→ s2.

2. Non-zenoness: TaBs do not preserve non-zenoness since TaBs are insensitive to exact

delays.

4.3 Minimization of Timed Automata

The finite graph G is the quotient A with respect to a time-abstracting bisimulation. Pro-

ducing G entitles minimization and can be performed by adapting a partition-refinement

algorithm to the timed case. The algorithm starts with an initial partition of the state space

into a finite number of equivalence classes and proceeds by refining the partition until it is

stable: for any two classes C1 and C2, either all states in C1 are predecessors of states in

C2, or none is.

The adapted partition-refinement algorithm is symbolic, that is, equivalence classes are

symbolic states and set-theoretic operators are utilized to compute the set of predecessor

states of a symbolic state. In practice, symbolic states are introduced as simple polyhedra

and set-theoretic operators become geometric transformations of polyhedra. When these

polyhedra are convex, their machine representation takes O
(
n2
)
space, where n is the

number of clocks, and the transformations take O
(
n3
)
time. However, when the polyhedra
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Figure 4.3: A simple partition-refinement algorithm [101].

are not convex, the cost of the transformations becomes exponential both in space and time,

due to the lack of a canonical machine representation.

Definition 25. Partition Refinement: Minimization is performed by partition refine-

ment [84]: Given an (untimed) graph G = (V,→) (where V is the set of nodes, and→ define

the edges), and an initial partition C0 of V into disjoint classes, one can successively refines

C0 until a pre-stable partition C is obtained. That is, for all C1, C2 ∈ C either, C1 ⊆ preds

(C2) or C1∩ preds (C2) = ∅ where:

preds (C)
def
= {v ∈ V | ∃ v ′ ∈ C. v → v ′}.

Refining consists of selecting two classes C1, C2 such that C1 is unstable in terms of C2,

and then replacing C1 by C1∩ preds (C2) and C1\ preds (C2). The algorithm is illustrated

in Figure 4.3.

The problem with this algorithm is that it refines all classes, whether they are reachable

or not (a class is reachable if it contains at least one reachable node). In order to prevent

refining unreachable classes, the minimal-model generation algorithm (MMGA) is introduced

[19]. The algorithm is shown in Figure 4.4. MMGA utilizes three sets of classes, namely,

the current partition C, the set of reachable classes Access ⊆ C and the set of stable classes

stable ⊆ C . If there exists a reachable class C1 which may be unstable i.e., C1 ∈ Access

\ Stable, the algorithm tries to refine it. If it succeeds, C1 is removed from C and replaced

by its two sub-parts. Otherwise, C1 is inserted in Stable. The sets Access and Stable are
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Figure 4.4: The minimal model generation algorithm [101].

updated accordingly: all predecessor classes of C1 which were stable are potentially unstable

and thus are removed from Stable. Also, a sub-part of C1 is potentially unreachable, unless

it contains the initial node. In the second case, a single-step reachability is performed, to

add to the reachable classes all successors of the newly-found stable class.

MMGA can be adapted to infinite state spaces, assuming that they admit effective

representations of classes and decision procedures for computing intersection, set-difference,

and predecessors of classes, as well as testing whether a class is empty. For termination, it

must be ensured that a pre-stable partition always exists. The state space of TA falls in

this category, with the difference that there are two kinds of predecessors, related to discrete

and time transitions of the TA. Taking this observation into account, the adapted algorithm

entitled time-abstracting MMGA (TA-MMGA) is illustrated in Figure 4.5.

In TA-MMGA, the initial partition C0 is a set of symbolic states. The test for stability of

a class S1 is done in two phases: first stability is checked with respect to time-successors and

then with respect to discrete successors. The updates of sets Stable and Access are modified

accordingly. TA-MMGA is parameterized by the discrete-predecessor function disc-pred≈,
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Figure 4.5: The time-abstracting minimal model generation algorithm [101].

so that it can be utilized for refinement with respect to any TaB. The function is described

as follows:

disc-pred≈ (S)
def
=

{ ⋃
e∈E

disc-pred (e, S) for STaB

4.4 Timelock and Deadlock

Two major issues are part of verifying timed systems. The first issue has to do with the

sanity of the model as a whole: it is important to check that the model does not contain

deadlocks (same as in the untimed domain) or timelocks (states from which the time cannot



CHAPTER 4. TIMED AUTOMATA AND TIME-ABSTRACTING BISIMULATION. 44

advance to infinity). Checking for lack of deadlocks and timelocks is essential when the

system consists of several components, the composition of which may lead to unexpected

blocking situations. The second issue occurs when checking a specific property: only non-

zeno behaviors (behaviors where time progresses without bound) should be considered. The

correspondent of this requirement in the untimed domain is the notion of strong fairness.

We start by discussing deadlock and timelock detection using time abstracting quotients.

Checking for non-zeno behaviors is more complicated. Untimed strong fairness requirements

can be used to remove zeno behaviors from the set of considered behaviors, so we can use a

fair CTL semantics and the corresponding techniques. However, these methods dramatically

raise the cost of the algorithms. For the sake of simplicity and practicality, the notion of

strongly non-zeno systems is defined where a minimal amount of time passes in every cyclic

execution. These systems are characterized with simple static conditions, which can be

checked compositionally (i.e., if two automata are strongly non-zeno, so it their composition),

and it is demonstrated that in strongly non-zeno systems all infinite executions are non-zeno,

which exempts us with the burden of checking non-zenoness during model-checking.

Definition 26. Deadlocks: Deadlocks are states violating the discrete-progress require-

ment and the automaton may not be able to perform any further beneficial computation.

Discrete progress means it should be possible to take discrete transitions infinitely often.

Formally, a state s of a TA A is a deadlock if there is no delay δ ∈ R and edge e ∈ E such

that s δ→ e→ s′. A is deadlock-free if none of its reachable states is a deadlock.

Definition 27. Non-Zeno Runs: Consider an infinite run ρ such that time (ρ) 6=∞, that

is, there exists t ∈ R such that for all i, time (ρ, i) < t. Such a run, called zeno, corresponds

to a pathological situation, since it violates the first of the time-progress requirements. A

non-zeno run is a run ρ such that time(ρ) =∞.

Definition 28. Timelocks: Timelocks are states violating the time-progress requirement.

Time progress means that it should be possible to let time pass infinitely often and without
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upper bound. Formally, a state s is a timelock if all infinite runs starting from s are zeno.

A is timelock-free if none of its reachable states is a timelock.

Notice that a deadlock is not necessarily a timelock, or the other way around.

Definition 29. Strongly Non-Zeno Timed Automata: Consider a TA A. A structural

loop of A is a sequence of distinct edges e1...em such that target(ei) = source(ei+1), for all

i = 1, ...,m with the addition that i + 1 is modulo m. A is called strongly non-zeno if for

every structural loop there exists a clock x and some 0 ≤ i, j ≤ m such that:

1. x is reset in step i , that is, x ∈ reset(ei); and

2. x is bounded from below in step j, that is, (x < 1)∩ guard(ej) = false.

This means that at least one unit of time elapses in every loop of A.

If A is strongly non-zeno then every infinite run of A is non-zeno therefore it can be

proven that a strongly non-zeno TA is also timelock-free. Strong non-zenoness is interesting

because it exempts us from the burden of ensuring time progress. Since strongly non-zeno

TA is also timelock-free, checking progress is reduced to checking deadlock-freedom.

If A, A′ are strongly non-zeno so is A ‖ A′ therefore strong non-zenoness can be checked

effectively on large systems, in a component-wise manner.

Deadlock and Timelock Detection Consider a TA A and let G be the quotient of A

with respect to a STaB ≈. A sink node in G is a node with no successors. It can be proven

using the definition of a deadlock and the pre-stability property of ≈ that A is deadlock-free

iff there is no reachable sink node in G. First, the STa-quotient G of A is produced and then

a DFS on G is performed looking for sink nodes. The two steps can be combined so that

sink nodes are reported on-the-fly during the construction of G. This can be performed by

the time-abstracting partition refinement algorithm.

A strongly non-zeno TA is timelock-free. We must be concerned about timelocks only

if A is not strongly non-zeno. In this situation, the following result [57] can be utilized to
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reduce timelock detection to TCTL model checking: It can be proven that A is timelock-free

iff it satisfies the TCTL formula ∀G ∃ F≥1 true.

4.5 Verification of TCTL Properties

Our approach is that, given a timed system A, a finite graph G is computed which captures

the behavior of A modulo the fact that exact time delays are abstracted away. We then use

the branching-time logic TCTL to specify a property. Then, untimed verification techniques

on G can be used to prove properties on A. Model checking A against properties specified as

a TCTL formula reduces to applying CTL model-checking algorithms on G. The quotient G

is generated using strong time abstracting bisimulation (since it is the only one preserving

branching-time properties).

If the TCTL formula φ to be verified does not involve any timing constraints (i.e., φ

is a CTL formula), G is generated directly from the original TA A, and a classical CTL

model-checking algorithm is utilized to label the nodes of G where φ holds. A satisfies φ iff

φ holds in the initial node of G.

Whenever φ involves timing constraints, the problem is reduced to CTL verification using

a method similar to the one in [4]. G is produced from a TA A+ which is an extension of A

with auxiliary clocks capturing the timing constraints appearing in φ. Also, φ is transformed

into a CTL formula φCTL. Then, CTL model-checking is utilized to label the nodes of G

where φCTL holds. A satisfies φ iff φCTL holds in the initial node of G.

4.5.1 TCTL Model Checking

Given a TA A to be checked against a TCTL formula φ, first A is extended with a set of

clocks, to achieve a new automaton A+; then we transform φ to a CTL formula φCTL; finally,

the STa-quotient of A+ is produced and model check it against φCTL. More precisely, let Q

and X be the set of discrete states and set of clocks of A. Also let I1, . . . , Im be the set of non-

trivial intervals appearing in φ. A+ has exactly the same structure as A , except that it has
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an augmented set of clocks X+ = X∪{y1, ..., ym} capturing the timing constraints appearing

in φ. The set of atomic propositions Props is also augmented with two propositions, namely,

pyj = 0 and pyj ∈ Ij , for each j = 1, ...,m. Finally, the formula φ is transformed to φCTL

recursively as follows:

p is transformed to p
¬φ′ is transformed to ¬φ′CTL

φ′ ∨ φ′′ is transformed to φ′CTL ∨ φ′′CTL
∃ φ′ UI j φ′′ is transformed to pyj = 0⇒ ∃ φ′CTLU (φ′′CTL ∧ pyj ∈ Ij)
∀ φ′ UI j φ′′ is transformed to pyj = 0⇒ ∀ φ′CTLU (φ′′CTL ∧ pyj ∈ Ij)

Regarding the CTL model checking, consider a TA A, a CTL formula φ on a set of atomic

propositions Props and a function P mapping each atomic proposition to a set of discrete

states of A. It can be checked whether A satisfies φ. It is assumed that A is deadlock-free

and strongly non-zeno.

Let ≈ be a STaB on A respecting P , that is, if (q1,v1) ≈ (q2,v2) then q1 ∈ P (p) iff

q2 ∈ P (p), for any p ∈ Props. Let G be the ≈-quotient of A. A formula is said to hold in a

node C of G if it is satisfied in some state of C, which implies that the formula is satisfied

in any state of C. To check A |=p φ, the function ctl-eval(φ) is utilized which is described

as follows :

ctl-eval(p) = {C | ∃ (q,v) ∈ C. q ∈ P (p)}

We determine all the nodes of G where φ holds and we also check whether the initial

node of G is contained in ctl-eval(φ). Then C ∈ ctl-eval(φ) iff for all s ∈ C, s satisfies

φ. According to the above definitions, we conclude that (q,v) |= φ iff there exists a state

(q,v+) of A+ such that ∀x ∈ X .v (x) = v+ (x), and if C is the class of (q,v+) in G then

C ∈ ctl-eval(φCTL) [12] [101].
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Timed Kripke Structures

48



Chapter 5

Timed Kripke Structures and Timed
Computation Tree Logic

Timed Kripke structures are Kripke structures where each transition has a duration. There

are several TCTL model checking algorithms available in the point-wise semantics for finite

timed Kripke structures. The TCTL model checking algorithm we consider refines the one

in [67]. We wonder whether such point-wise model checking can be utilized in order to

achieve a sound and complete model checking procedure for TCTL formulas in continuous

semantics.

Suppose all timed transitions s t→ s′ are split into a sequence of timed transitions s γ→

s1
γ→ s2

γ→ ...sk
γ→ s′ with the same total duration, and where each si is some state that

satisfies the same atomic propositions that s does. The duration γ is the half of the greatest

common divisor of all the following time values: all non-zero durations happening in the

timed Kripke structure and all non-zero finite time values appearing as bounds in the TCTL

formula under consideration. Point-wise model checking can then be used on the resulting,

still finite, timed Kripke structure. Essentially a sound and complete model checking method

in the continuous semantics is obtained under specified conditions that are satisfied by many

interesting classes of systems. Point-wise model checking can be used on the resulting timed

Kripke structure, which is still finite.

The idea outlined above applies to those discrete-event systems where the time when

49
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the next event happens is given deterministically, and where the progress of time does not

modify the valuation of the atomic propositions. The latter condition usually holds in

practice because time spends only influences timers and clocks, whose values rarely affect

the validity of an atomic proposition.

In all, the model checking of a TCTL formula under the more natural continuous seman-

tics is reduced to a TCTL model checking problem in the point-wise semantics. There are

straightforward model checking algorithms are available for timed Kripke structures which

are parametric in the (discrete or dense) time domain. In particular, the methods which

are explained latter are independent of the formalism utilized to explain the timed Kripke

structure.

5.1 Time Domains

A time domain is either discrete, such as the set of natural numbers N, or dense, such as

the non-negative rational numbers Q≥0. Instead of considering a specific time domain, a

general algebraic abstract specification of time is utilized. Time is thus a linearly ordered

commutative monoid T = (Time,+, 0, <) with additional operators, such as −̇, where τ−̇τ ′

signify τ − τ ′ if τ < τ ′ and 0 otherwise, and max, where max (τ, τ ′) = τ ′ if τ < τ ′ and τ

otherwise. T is then a time domain satisfying the theory TIME. To simplify the notation,

the T is used for both the algebra and the carrier of the algebra, and write 0,+, ... for the

interpretations 0T ,+T of 0,+, ... in T . We use τ, τ ′, τ1, ... to denote time values, and write

kτ or k.τ for τ + τ + · · ·+ τ k times. Time \ {0} is denoted by Time>0. The theory TIME∞

stands for TIME with the new infinity element∞ /∈ Time, such that Time∞ = Time∪{∞}.

A time interval is a non-empty interval of the form [a, b] , (a, b], [a, b∞) or (a, b∞), where

a, b ∈ T and b∞ ∈ T∞. Let Intervals ( T ) be the set of all time intervals in T . For some

I ∈ Intervals (T ) we have:

inf (I) = max {τ ∈ T∞|∀τ ′ ∈ I.τ ≤ τ ′} to be the infimum of I;
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Figure 5.1: Axioms for the theory TIMEgcd.

sup (I) = min {τ ∈ T∞|∀τ ′ ∈ I.τ ′ ≤ τ} to be the supremum of I;

An interval I ∈ Intervals (T ) satisfies (∀τ ∈ T . inf (I) < τ < sup (I)⇒ τ ∈ I) The theory

TIMEgcd adds the following to TIME:

1. | : Time>0 × Time>0 → Bool

2. gcd : Time>0 × Time>0 → Time>0

3. half : Time>0 → Time>0

This theory satisfies the axioms in Figure 5.1 for each τ1, τ2, τ3 ∈ Time>0. Intuitively,

τ1|τ2 (τ1 divides τ2 or τ1 is a divisor of τ2) is true if adding up τ1 for a finite number of times

gives τ2; gcd (τ1, τ2) denotes the greatest common divisor of τ1 and τ2 which always exist;

and half (τ1) denotes the half of τ1, that is 2 . half (τ1) = τ1. For example, Q≥0 satisfies

this theory with the standard interpretation of divisors and the greatest common divisor

operator. The theory TIMEgcd∞ adds to TIMEgcd the infinity element ∞.

5.2 Timed Kripke Structures

Different timed extensions of Kripke structures (KS) exist [67] [48] [29] [30] cite-

laroussinie2003expressivity [31]. The timed Kripke structures used here annotates tran-

sitions with durations.

Definition 30. Timed Kripke Structures: Given a set AP of atomic propositions, a

timed Kripke structure over AP is a tuple T K = (S, T ,→, L), where S is a set of states, T
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is a time domain satisfying the theory TIME, →⊆ S × T × S is a total transition relation

with duration (i.e., for each s ∈ S there exist τ and s′ such that (s, τ, s′) ∈→ ), and L is a

labeling function L : S → P (AP ). s τ→ s′ is used for (s, τ, s′) ∈→. A transition s 0→ s′ is

called instantaneous and a transition s τ→ s′ with τ > 0 is a tick transition. T K is finite iff

→ is finite.

A transition s
τ→ s′, with τ > 0, can be interpreted in two ways: In the point-wise

interpretation an “atomic tick step” of duration τ means that we jump directly from s0

to s1 without “visiting” any intermediate time in between. Alternatively, the continuous

interpretation assumes that time advance continuously from s0 to s1. These interpretations

can be formalized by defining the notion of configuration of a timed Kripke structure.

Definition 31. Configurations: A configurations 〈s, δ〉 ∈ S × T of T K specifies that

the system has been in state s for time δ.

Definition 32. Interpretations of a Timed Kripke Structure: The continuous

interpretation of T K is given by the one-step transition relation ↪→⊆ (S × T )×T × (S × T )

defined by the following rules:

s
τ→ s′ δ + τ ′ < τ

〈s, δ〉 τ ′
↪→ 〈s, δ + τ ′〉

Ruletick1
s

τ→ s′ δ + τ ′ = τ

〈s, δ〉 τ ′
↪→ 〈s′, 0〉

Ruletick2
s

0→ s′

〈s, 0〉 0
↪→ 〈s′, 0〉

Ruleinst

where τ, τ ′ > 0. The point-wise interpretation of T K is given by the operational semantics

consisting of the rules Ruletick2 and Ruleinst.

The rules Ruletick1 and Ruletick2 signify tick steps which permit time progress, whereas

rule Ruleinst defines instantaneous steps. The tick steps explained by Ruletick2 are maximal,

since they permit time to elapse by the maximal possible duration of the given transition. In

contrast, Ruletick1 permits time to elapse in a state s ∈ S by a value less than the duration

of the longest tick step from s. The point-wise interpretation of a timed Kripke structure

allows only instantaneous and maximal tick steps, and therefore all reachable configurations

〈s, δ〉 have δ = 0.
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Definition 33. Valid Configurations in Point-Wise and Continuous Semantics:

Given a state s ∈ S, we denote by TT K (s) ⊂ T the set
{
τ ∈ T | ∃s′ ∈ S . s τ→ s′ ∧ 0 < τ

}
of positive tick step durations from s, and the sets CpT K ⊆ S × T are defined respectively.

CcT K ⊆ S ×T of valid configurations of T K in the point-wise and continuous interpretation,

respectively are defined as follows:

CpT K = {〈s, 0〉 |s ∈ S}

CcT K = CpT K ∪ {〈s, δ〉 | ∃τ ∈ TT K (s) .δ < τ}

Definition 34. Path in the Point-Wise Interpretation: A path π of T K in the

point-wise interpretation is an infinite sequence of steps 〈s0, 0〉
τ0
↪→ 〈s1, 0〉

τ1
↪→ 〈s2, 0〉

τ2
↪→

..., where 〈s0, 0〉 ∈ CpT K and each 〈si, 0〉
τi
↪→ 〈si+1, 0〉 is a step allowed in the point-wise

interpretation of T K. The sπi = si, and cπi =
∑i−1

j=0 τj are defined.

Definition 35. Path in the Continuous Interpretation: A path π of T K in the

continuous interpretation is an infinite sequence of steps 〈s0, δ0〉
τ0
↪→ 〈s1, δ1〉

τ1
↪→ 〈s2, δ2〉

τ2
↪→ ...,

where 〈s0, δ0〉 ∈ CcT K and each 〈si, δi〉
τi
↪→ 〈si+1, δi+1〉 a step allowed in the continuous

interpretation of T K. The sπi = si, and cπi =
∑i−1

j=0 τj and δ
π
i = δi are defined.

PathsPT K (〈s, 0〉) denotes the set of all the paths in the point-wise interpretation of T K

starting in a valid configuration 〈s, 0〉 ∈ CpT K. Similarly, PathscT K (〈s, δ〉) is the set of all

paths in the continuous interpretation of T K starting in 〈s, δ〉 ∈ CcT K [72].

5.3 Zeno-Free Timed Kripke Structures

The continuous interpretation of a timed Kripke structure permits Zeno paths.

Definition 36. Time-Divergent Path: A path π of T K is time-divergent if for each

τ ∈ T there is an i ∈ N such that cπi > τ , and is time-convergent or Zeno otherwise.
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Figure 5.2: A timed Kripke structure.

Figure 6.1 shows a timed Kripke structure with the time domain Q≥0. When interpreted

continuously, the path 〈s0, 0〉
1
↪→ 〈s0, 1〉

1/2
↪→ 〈s0, 1 + 1/2〉

1/4
↪→ 〈s0, 1 + 1/2 + 1/4〉

1/8
↪→ ... is

possible. This path is Zeno i.e., it has an infinite length but time 2 is never reached.

The unrealizable behaviour modeled by Zeno paths, paths (like the one in the above

example) cannot be excluded by suitable modelling. The Zeno paths together with those

paths that execute infinitely many instantaneous steps in finite time must be taken into the

account as a modelling flaw. In the rest of the thesis, Zeno-free timed Kripke structures will

be considered. A finite timed Kripke structure is Zeno-free whenever it does not contain

any loops consisting of instantaneous transitions only (zero-loops).

The notion of reachability is limited to configurations that are reachable by time-

divergent paths. The notation tdPathspT K (〈s, 0〉) is utilized for the set of all time-divergent

paths in the point-wise interpretation of T K starting in a valid configuration 〈s, 0〉 ∈ CpT K.

The notation tdPathscT K (〈s, δ〉) is used for the set of all time-divergent paths in the contin-

uous interpretation of T K starting in 〈s, δ〉 ∈ CcT K.

A configuration 〈s′, 0〉 ∈ CpT K is reachable from 〈s, 0〉 ∈ CpT K in time τ in the point-

wise interpretation iff there exists a path π ∈ tdPathspT K (〈s, 0〉) and some i ∈ N such that

sπi = s′ and cπi = τ . The configuration 〈s′, δ′〉 ∈ CcT K is reachable from 〈s, δ〉 ∈ CcT K in

time τ in the continuous interpretation iff there exists a path π ∈ tdPathscT K (〈s, δ〉) and

some i ∈ N such that sπi = s′, δπi = δ′ and cπi = τ . A state s′ ∈ S is reachable from
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s ∈ S iff there exist two time values δ′, τ ∈ T such that the configuration 〈s′, δ′〉 is valid

and reachable from 〈s, 0〉 in time τ . We note that PathspT K (〈s, 0〉) ⊆ PathscT K (〈s, 0〉) and

tdPathspT K (〈s, 0〉) ⊆ tdPathscT K (〈s, 0〉).

Definition 37. Timed Configuration: The set T CT K ⊆ S × T × T of timed configu-

rations of T K is defined as T CT K = {(s, δ, c) | 〈s, δ〉 ∈ CT K and c ∈ T }. A timed configu-

ration (s, δ, c) is denoted by 〈s, δ〉@c. Let π ∈ PathsT K (〈s0, δ0〉), for some 〈s0, δ0〉 ∈ CT K

be the path 〈s0, δ0〉
τ0
↪→ 〈s1, δ1〉

τ1
↪→ ...; then the corresponding timed path@π is denoted by

〈s0, δ0〉@c0
τ0
↪→ 〈s1, δ1〉@c1

τ1
↪→ ... with ci = cπi for all i ∈ N. The notions defined for untimed

configurations are utilized in the same way as long as they make sense for timed configu-

rations; for example we say that a timed path@π is time-divergent (time-convergent) if its

corresponding path π is time-divergent (time-convergent).

According to the above definition, timed paths begin at the global time 0, i.e., c0 = 0. In

the point-wise interpretation of a timed Kripke structure, all reachable timed configurations

〈s, δ〉@c have δ = 0.

Definition 38. Point-Wise and Continuous Positions in a Path: Assume a path

π = 〈s0, δ0〉
τ0
↪→ 〈s1, δ1〉

τ1
↪→ ... ∈ PathsT K (〈s0, δ0〉) starting in some configuration 〈s0, δ0〉 ∈

CT K. A point-wise position in π is any timed configuration 〈si, δi〉@cπi with i ∈ N. For each

pointwise position 〈si, δi〉@cπi in π the set is defined as follows:

prepπ (〈si, δi〉@cπi ) =
{
〈sj , δj〉@cπj | j ∈ N and 0 ≤ j < i

}
of its point-wise predecessor positions.

A continuous position in π is any timed configuration 〈si, δi + τ〉@cπi + τ with i ∈ N

and 0 ≤ τ < τi. For each continuous position 〈si, δi + τ〉@cπi + τ in π the set is defined as

follows:

precπ (〈si, δi + τ〉@cπi + τ) ={
〈sj , δj + τ ′〉@cπj + τ ′ | (i = j and 0 ≤ τ ′ < τ) or (0 ≤ j < i and 0 ≤ τ ′ < τj)

}
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of its continuous predecessor positions. The point-wise (continuous) positions in @π are the

point-wise (continuous) positions in π.

5.4 Timed Computation Tree Logic

Various timed extensions of temporal logics have been designed [9] [105]. Timed CTL

(TCTL) [4] is in particular an extension of CTL [36] with interval time constraints on

temporal operators.

Definition 39. Timed computation tree logic: Given a set AP of atomic propositions

and a time domain T , TCTL formulas ϕ are built using the following grammar:

ϕ ::= true | p | ¬ϕ | ϕ ∧ ϕ | E ψ | A ψ

ψ ::= ϕ UI ϕ

where p ∈ AP and I ∈ Intervals (T ).

The path formula ψ = ϕ1 UI ϕ2 holds for a given path π if ϕ2 holds at a position

〈s, δ〉@c in π happening at time c ∈ I and ϕ1 holds for all predecessor positions. The

existentially quantified state formula E ψ holds in a given configuration if there exists some

path that begins from that configuration and satisfies ψ, while the universally quantified

state formula A ψ holds in a given configuration if ψ holds in each path that starts from

that configuration. The time interval subscript is often described relationally, using = a,

≤ b, < b, ≥ a, and > a for [a, a], [0, b], [0, b), [a,∞), and (a,∞), respectively. TCTLcb is the

fragment of TCTL without open finite bounds i.e., where all time intervals are of the form

[a, b] with a ≤ b, or [a,∞). The universal and the existential fragments TACTL and TECTL

of TCTL [53] allow negation only in front of atomic propositions and limit quantification to

the universal quantifier and to the existential quantifier, respectively.

Definition 40. TCTL Point-Wise Semantics: For a timed Kripke structure T K =

(S, T ,→, L), a valid configuration of T K in the pointwise interpretation 〈s, 0〉 ∈ CpT K , and a
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TCTL formula ϕ, the point-wise satisfaction relation T K, 〈s, 0〉 |=p ϕ is defined inductively

below. Then T K, s |=p ϕ iff T K, 〈s, 0〉 |=p ϕ.

T K, 〈s, 0〉 |=p true always holds.
T K, 〈s, 0〉 |=p p iff p ∈ L (s).
T K, 〈s, 0〉 |=p ¬ϕ1 iff T K, 〈s, 0〉 6|=p ϕ1.
T K, 〈s, 0〉 |=p ϕ1 ∧ ϕ2 iff T K, 〈s, 0〉 |=p ϕ1 and T K, 〈s, 0〉 |=p ϕ2.
T K, 〈s, 0〉 |=p E ψ iff T K, π |=p ψ for some π ∈ tdPathspT K (〈s, 0〉).
T K, 〈s, 0〉 |=p A ψ iff T K, π |=p ψ for all π ∈ tdPathspT K (〈s, 0〉).
T K, π |=p ϕ1 UI ϕ2

iff
there is a pointwise position 〈s′′, 0〉@c′′ in π s.t c′′ ∈ I,
T K, 〈s′′, 0〉 |=p ϕ2 and T K, 〈s′, 0〉 |=p ϕ1 for all
pointwise positions 〈s′, 0〉@c′ in prepπ (〈s′′, 0〉@c′′).

Definition 41. TCTL Continuous Semantics: Given T K as above, 〈s, δ〉 ∈ CcT K a valid

configuration in the continuous interpretation of T K, and a TCTL formula ϕ. The contin-

uous satisfaction relation |=c is defined similarly to |=p, but using the notion of continuous

position instead of point-wise position, and tdPathscT K (〈s, d〉) instead of tdPathspT K (〈s, d〉).

The resulting definition is shown below. Then T K, s |=c ϕ iff T K, 〈s, 0〉 |=c ϕ.

T K, 〈s, δ〉 |=c true always holds.
T K, 〈s, δ〉 |=c p iff p ∈ L (s).
T K, 〈s, δ〉 |=c ¬ϕ1 iff T K, 〈s, δ〉 6|=c ϕ1.
T K, 〈s, δ〉 |=c ϕ1 ∧ ϕ2 iff T K, 〈s, δ〉 |=c ϕ1 and T K, 〈s, δ〉 |=c ϕ2.
T K, 〈s, δ〉 |=c E ψ iff T K, π |=c ψ for some π ∈ tdPathscT K (〈s, δ〉).
T K, 〈s, δ〉 |=c A ψ iff T K, π |=c ψ for all π ∈ tdPathscT K (〈s, δ〉).
T K, π |=c ϕ1 UI ϕ2

iff
there is a continuous position 〈s′′, δ′′〉@c′′ in π s.t c′′ ∈ I,
T K, 〈s′′, δ′′〉 |=c ϕ2 and T K, 〈s′, δ′〉 |=c ϕ1 for all
continuous positions 〈s′, δ′〉@c′ in precπ (〈s′′, δ′′〉@c′′).

In the point-wise semantics checking a formula happens only immediately after a discrete

event. By contrast, in the continuous semantics checking happens continuously through

a tick step at all possible times. Specifically, in the continuous semantics a tick transi-

tion s
τ→ s′ needs to take into account any possible splitting 〈s, 0〉 τ0

↪→ 〈s, τ0〉
τ1
↪→ ...

τk
↪→

〈s, τ0 + ...+ τk〉
τk+1
↪→ 〈s′, 0〉 , with τ0 + τ1 + ... + τk + τk+1 = τ . Furthermore, any possible

continuous position in any path needs to be considered.



Chapter 6

Reducing Continuous to Point-Wise
Semantics in Model Checking

We now show how TCTL model checking in the continuous semantics can be reduced to

TCTL model checking in the point wise semantics, which is amenable to explicit-state

model checking. The transformation of a timed Kripke structure T K will result in the

model checking of the resulting timed Kripke structure in the point-wise semantics being

equivalent to model checking T K in the continuous semantics. The transformation involves

two main steps as follows:

Firstly, a gcd-transformation mapping the timed Kripke structure T K to another timed

Kripke structure T Khalf(GCD(T K,ϕ))
a is performed so that

T K, s |=c ϕ ⇔ T Khalf(GCD(T K,ϕ))
a , (s, 0) |=p β (ϕ) ,

for a TCTLcb formula ϕ. All temporal operators in ϕ are annotated with closed intervals

[a, b] or [a,∞); (s, 0) is the state in T Khalf(GCD(T K,ϕ))
a a corresponding to s, and β (ϕ) is a

transformation of ϕ.

Then we convert a given TCTL formula (with possibly open intervals) ϕ to a TCTLcb

formula α (ϕ), so that

T Khalf(GCD(T K,ϕ))
a , (s, 0) |=c ϕ ⇔ T Khalf(GCD(T K,ϕ))

a , (s, 0) |=c α (ϕ) ,

58
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Figure 6.1: A timed Kripke structure.

The above results will be merged together according to the fact that the gcd-

transformation does not influence the continuous semantics of timed Kripke structures, i.e.

T K, s |=c ϕ ⇔ T Khalf(GCD(T K,ϕ))
a , (s, 0) |=c ϕ. The desired equivalence is achieved which

decrease the model checking problem in the continuous semantics to a model checking prob-

lem in the point-wise semantics:

T K, s |=c ϕ ⇔ T Khalf(GCD(T K,ϕ))
a , (s, 0) |=p β (α (ϕ)) ,

for any TCTL formula ϕ [72].

6.1 Abstraction of TKS by GCD-Transformations and τ -
Transformations

To be sure that time progress stops at any time point where a time bound in the formula

can be attained, any tick transition is split into a sequence of tick transitions of a smaller

duration τ that divides the duration of each tick transition and each finite non-zero time

bound in the formula.

The example from Figure 6.1 demonstrates that it is not adequate to always advance time

by the greatest common divisor (gcd) γ of these values to achieve a sound and complete model

checking in the continuous semantics. In the point-wise interpretation, T K has only one

behaviour from s0, which is illustrated with respect to the validity of the atomic proposition

p along the path π = ¬p 2→ ¬p 0→ p
0→ ¬p 2→ ¬p 2→ . . . (i.e., ¬p forever). The only

p-state is reachable in exactly time 2. All tick transitions have duration 2. Consider then

ϕ = E ϕ1U=2 true, where ϕ1 is the formula E F=2 p. The formula ϕ shows that ϕ1 must

hold in all positions until time 2 is reached. The greatest common divisor of all tick transition
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durations and all time values in ϕ is 2, therefore converting T K by splitting each tick

transition into a sequence of transitions, each of duration 2 leaves it unchanged.

In the point-wise semantics this conversion (i.e., the above behaviour) satisfies ϕ in terms

of the initial state s0. However,T K, s0 |=c ϕ does not hold, since ϕ1 does not hold in the

continuous positions along the first tick step; for example, it does not hold at time 1. The

basis of the method is to capture these “intermediate” states by further splitting the tick

transitions of duration equal to the gcd into two smaller ones. The time is advanced not by

the greatest common divisor γ, but by a time γh such that 2 . γh = γ , that is, by “half”

the gcd, in each tick step. A generalization of the gcd-transformation is τ -transformations

which splits a tick transition s τ ′→ s′ into k transitions of duration τ followed by a transition

of duration τ ′ −̇ kτ , and needs k new states (s, δ) at times δ = τ, 2τ, ..., kτ .

Definition 42. τ - transformation: Let τ ∈ T be a non-zero time value. The τ -

transformation of T K is the timed Kripke structure T Kτ = (Sτ , T ,→τ , Lτ ) with

• Sτ = {(s, δ) ∈ S × T |δ = 0 ∨ (∃n ∈ N, τ ′ ∈ TT K (s) .δ = nτ < τ ′)}.

• ((s1, δ1) , τ1, (s2, δ2)) ∈→τ if and only if

1. s1
0→ s2 and τ1 = δ1 = δ2 = 0; or

2. s1
τ
′
1→ s2 and s2 = s1, τ1 = τ δ2 = δ1 + τ < τ

′
1; or

3. s1
τ
′
1→ s2 and τ1 ≤ τ , δ1 + τ1 = τ

′
1, δ2 = 0

• Lτ (s, δ) = L (s).

A state (s, δ) in T Kτ shows that the system is in state s and that time has advanced by

δ since the last T K-transition. Instantaneous T K-transitions are introduced as transitions

(s1, 0)
0→
τ

(s2, 0) in T Kτ , and a tick T K-transition s1
kτ+τ1−→ s′2 is demonstrated by the

sequence (s1, 0)
τ→ (s1, τ)

τ→ ...
τ→ (s1, kτ)

τ1→ (s2, 0).
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Proposition 4. Let 〈s, nτ + δ〉 ∈ CcT K for some s ∈ S, n ∈ N, τ ∈ T with τ > 0 and δ ∈ T

with δ < τ . Then

T K , 〈s, nτ + δ〉 |=c ϕ iff T Kτ , 〈(s, nτ) , δ〉 |=c ϕ.

In otger words, a τ -transformation does not affect the continuous semantics of timed

Kripke structures.

Definition 43. GCD (T K, ϕ): Given a timed Kripke structure T K = (S, T ,→, L) over a

set of atomic propositions AP, where the time domain T satisfies TIMEgcd, and a TCTL

formula ϕ over AP, it is defined:

TT K =
{
τ ∈ T | ∃ s, s′ ∈ S . s τ→ s′ ∧ 0 < τ

}
Tϕ = {τ ∈ {inf (I) , sup (I)} \ {0,∞} | there exists a subformula ϕ1 UI ϕ2 of ϕ}

GCD (T K, ϕ) = gcd (TT K ∪ Tϕ)

where, for T ′ ⊆ T a finite non-empty set of time values, gcd (T ′) is the greatest common divi-

sor of these time values, and is recursively defined as gcd ({τ}) = τ and gcd ({τ1, τ2} ] T ′) =

gcd ({gcd (τ1, τ2)} ∪ T ′).

If T K is finite and has at least one tick transition then the set of time values TT K ∪ Tϕ

is non-empty and finite. In the rest of this thesis it is assumed that the time domain of T K

satisfies TIMEgcd and that T K is finite and Zeno-free and has at least one tick transition.

The γ is utilized to denote GCD (T K, ϕ), and γh to denote half(γ).

6.2 Reducing Continuous to Point-Wise Semantics in TCTLcb

Model Checking

Let ϕ be a TCTLcb formula. A non-Zeno path in T Kγh beginning in state (s0, 0) with only

maximal tick steps consists of an alternating sequence of zero or more instantaneous steps,

followed by a sequence of one or more tick steps having total duration multiple of γ:
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〈(s0, 0) , 0〉 0
↪→ ...

0
↪→︸ ︷︷ ︸

k0 times

〈(sk0 , 0) , 0〉
γh
↪→ ...

γh
↪→︸ ︷︷ ︸

total duration γn0

〈(
s′k0 , 0

)
, 0
〉 0
↪→ ...

0
↪→︸ ︷︷ ︸

k1 times

...

where for each i ∈ N, ki, ni ∈ N, and ni > 0, there exists a tick transition of duration γni

from ski to s′ki in T K. This maximal path in T Kγh corresponds to the following maximal

path in T K:

〈s0, 0〉
0
↪→ ...

0
↪→︸ ︷︷ ︸

k0 times

〈sk0 , 0〉
γn0
↪→
〈
s′k0 , 0

〉 0
↪→ ...

0
↪→︸ ︷︷ ︸

k1 times

...

Definition 44. Canonical Representative of a Configuration σ: Given 0 < τ ∈ T

such that GCD (T K, ϕ) is a multiple of 2τ and T Kτ = (S, T ,→, L) the τ -transformation

of T K. The function canT Kτ : CcT Kτ → CcT Kτ on valid configurations 〈(s, nτ) , δ〉 of T Kτ is

defined as

canT Kτ (〈(s, nτ) , δ〉) =

{
〈(s, nτ) , 0〉 if δ = 0 or n is odd
〈(s, (n+ 1) τ, 0〉) otherwise

and call canT Kτ (〈(s, nτ) , δ〉) the canonical representative of 〈(s, nτ) , δ〉. We omit the sub-

script T Kτ when it is clear from the context [72].

The canonical representative of configurations 〈(s, 0) , 0〉 in T Kγh , which corresponds to

the state s in T K, is the identity. The canonical representative of configurations 〈(s, δ) , δ′〉,

with 0 < δ′ < γh, is a configuration 〈(s, δ′′) , 0〉, such that δ′′ is an odd multiple of γh,

i.e.,δ′′ = (2n+ 1) γh for some n ∈ N.

Figure 6.2 display the mapping of configurations to their canonical representatives on

the time segment corresponding to the path of T K in Figure 6.1 Dotted arrows map a

Figure 6.2: Mapping configurations to their canonical representative.
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configuration on the top to its canonical representative on the bottom. The continuous

positions along tick steps are defined by a thick black line, and the continuous position after

a discrete step at time 2 is shown by a black circle.

γ divides all finite non-zero time bounds in any time interval from ϕ. Therefore, any

finite bound in such time intervals is a multiple of 2γh (e.g., if γh = 1/2 and I = (2,∞) is

(2γh . 2,∞)). Any time interval I in a TCTLcb formula has the form [2ml . γh, 2mu . γh] for

some ml,mu ∈ N with ml ≤ mu, or I = [2ml . γh,∞) for some ml ∈ N.

To show the correctness of the reduction the following definition shows that if the time

duration between two configurations along a path is in a given time interval I (appearing in

ϕ) then the time duration between the corresponding canonical representatives is also in I:

Proposition 5. Let τ ∈ T , τ > 0 and I a time interval such that either I = [2ml . τ, 2mu . τ ]

for some ml,mu ∈ N with ml ≤ mu, or I = [2ml . τ,∞] for some ml ∈ N. Let furthermore

δi ∈ T with δi = 2niτ + τi for some ni ∈ N and τi ∈ T , 0 ≤ τi < 2τ for i = 0, 1. It is defined

δ∗i =

{
δi if τi = 0

2niτ + τ if τi > 0

for i = 0, 1.Then

δ1 − δ0 ∈ I ⇒ δ∗1 − δ∗0 ∈ I

Proposition 6. Let ϕ be a TCTLcb formula over AP, 0 < τ ∈ T such that GCD (T K, ϕ)

is a multiple of 2τ and T Kτ (S, T ,→, L) the τ -transformation of T K. Then for each valid

configuration σ of T Kτ it holds that

T Kτ , σ |=c ϕ ⇔ T Kτ , can (σ) |=c ϕ

In other words, a configuration σ and its canonical representative can (σ) satisfy the

same sub-formulas of ϕ in the continuous semantics. This shows that the mapping to

the canonical representatives maintains the equivalence for any TCTLcb formula with time

bounds that are multiples of the computed greatest common divisor γ. Additionally, for a
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tick step of duration γh in T Kγh , all continuous configurations during this tick step (i.e., all

configurations 〈(s, δ) , δ′〉 with 0 < δ < γh) satisfy the same sub-formulas of ϕ. Therefore,

it is possible to abstract these configurations using the respective canonical representative

(i.e., can (〈(s, δ) , δ′〉)), which, has the form 〈(s, (2n+ 1) γh) , 0〉 for some n ∈ N. Abstract

configurations are the canonical representatives for sets of configurations, while concrete

configurations (of the form 〈(s, (2n) γh) , 0〉) only represent themselves. In Figure 6.2 the

abstract configurations are 〈(s0, 1) , 0〉 and 〈(s3, 1) , 0〉 while the concrete configurations are

〈(s0, 0) , 0〉, 〈(s1, 0) , 0〉, 〈(s2, 0) , 0〉 and 〈(s3, 0) , 0〉.

If a path begins in an abstract configuration, then all the positions at an even multiple of

γh are also abstract, and all positions at an odd multiple of γh are concrete. If a path begins

in a concrete configuration, then all positions at an even multiple of γh are also concrete,

and all positions at an odd multiple of γh are abstract. This holds for any T Kτ such that

γh is a multiple of τ .

Given an abstract configuration (respectively, a concrete configuration) σ of T Kτ , such

that γh is a multiple of τ and a path π ∈ PathsT Kτ (σ), it can be proven that both the

following facts are true:

• For all positions σ′@c in π such that c is an even multiple of τ , it holds that σ′ is an

abstract configuration (respectively, a concrete configuration).

• For all positions σ′@c in π such that c is an odd multiple of τ , it holds that σ′ is a

concrete configuration (respectively, an abstract configuration).

A modification β (ϕ) of formula ϕ is introduce which captures the following conditions,

and therefore has the same satisfaction (in the continuous semantics) as ϕ. A path π satisfies

the formula ϕ1 UI ϕ2 in the continuous semantics iff one of the following formulas holds (in

both the continuous and point-wise semantics):

1. ϕ1 UI (ϕ2 and “concrete”), that is ϕ2 holds at a position in I corresponding to some

concrete configuration (and ϕ1 holds in all positions before), or
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2. ϕ1 UI (ϕ1 ∧ ϕ2 and “abstract”), that is ϕ1 ∧ ϕ2 holds at a position in I corresponding

to some abstract configuration (and ϕ1 holds in all positions before), or

3. the interval I includes time 0 and ϕ2 holds immediately (in particular, when the

configuration at the first position is an abstract one).

In order to obtain an elegant definition of the modified formula β (ϕ), all states in T Kγh

are labeled as (s, (2n+ 1) γh) and a new proposition pa corresponding to the abstract config-

urations is utilized. Configurations corresponding to some abstract state (i.e., pa-states) can

be separated from other concrete configurations (i.e., configurations corresponding to some

¬pa-state) directly in a TCTL formula. The gcd-transformation T Kγha of a timed Kripke

structure is defined to be T Kγh , where the labeling function uses the new atomic proposition

pa.

Definition 45. Abstract τ -transformation: Let ϕ be a TCTL formula over AP,

0 < τ ∈ T such that GCD (T K, ϕ) is a multiple of 2τ and T Kτ (S, T ,→, L) be the τ

-transformation of T K. It is defined APa = AP ] {pa} and an extended labeling function

La : S → P (APa), such that:

∀ (s, δ) . La (s, δ) =

{
L (s, δ) ∪ {pa} if ∃ n ∈ N : δ = (2n+ 1) τ,

L (s, δ) otherwise.

The timed Kripke structure (S, T ,→, La) is denoted by T Kτa and we refer to it as the

abstract τ -transformation of T K. When 2τ = GCD (T K, ϕ), we denote the abstract τ

-transformation of T K by T Kγha and we refer to it as the gcd-transformation of T K.

The abstract τ -transformation does not influence the continuous semantics of the τ

-transformation i.e., T Kτ , (s, 0) |=c ϕ
′ ⇔ T Kτa, (s, 0) |=c ϕ

′, where ϕ is a TCTL formula

over the atomic propositions AP.

Definition 46. TCTLcb formula β (ϕ): Let ϕ be a TCTLcb formula over AP, 0 < τ ∈ T

such that GCD (T K, ϕ) is a multiple of 2τ and T Kτa = (S, T ,→, L) is the abstract τ -

transformation of T K, so that L : S → P (APa) and APa = AP ] {pa}. The TCTLcb
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formula β (ϕ) is inductively defined as follows:

β (true) = true;
β (p) = p;
β (¬ ϕ1) = ¬β (ϕ1);
β (ϕ1 ∧ ϕ2) = β (ϕ1) ∧ β (ϕ2);

β (E ϕ1 UI ϕ2) =

{
β (ϕ2) ∨ E ψ if 0 ∈ I
E ψ if 0 /∈ I;

β (A ϕ1 UI ϕ2) =

{
β (ϕ2) ∨A ψ if 0 ∈ I
A ψ if 0 /∈ I,

where ψ = β (ϕ1) UI (β (ϕ2) ∧ (¬pa ∨ β (ϕ1))).

Proposition 7. Let ϕ be a TCTLcb formula over AP, 0 < τ ∈ T such that GCD (T K, ϕ)

is a multiple of 2τ and T Kτa = (S, T ,→, L) the abstract τ -transformation of T K, so that

L : S → P (APa) and APa = AP ] {pa} are as given in the definition of T Kτa. Then for

each state (s, δ) of T Kτa and each sub-formula ϕ′ of ϕ, it holds that

T Kτa, (s, δ) |=c ϕ
′ ⇔ T Kτa, (s, δ) |=p β (ϕ′)

That is, model checking β (ϕ) in T Kγha in the point-wise semantics is equivalent to model

checking the TCTLcb formula ϕ in T K under the continuous semantics.

Proposition 8. [72] Let AP be a set of atomic propositions and T K a timed Kripke structure

over AP whose time domain satisfies the theory TIMEgcd. Let ϕ be a TCTLcb formula over

AP, 0 < τ ∈ T such that GCD (T K, ϕ) is a multiple of 2τ and T Kτa = (S, T ,→, L) the

abstract τ -transformation of T K. Then for each state s of T K and each subformula ϕ′ of

ϕ it holds that

T K, s |=c ϕ
′ ⇔ T Kτa, (s, 0) |=p β (ϕ′)

6.3 Reducing Continuous to Point-Wise Semantics in TCTL
Model Checking

The result from the previous section are developed to the entire TCTL logic by transforming

a TCTL formula ϕ with possibly open interval bounds to a TCTLcb formula α (ϕ), so that
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α (ϕ) holds in T Kγha in the continuous semantics if and only if ϕ holds in T Kγha in the

continuous semantics:

T Kγha , (s, δ) |=c ϕ ⇔ T Kγha , (s, δ) |=c α (ϕ)

This in turn implies that model checking β (α (ϕ)) in T Kγha in the point-wise semantics is

equivalent to model checking ϕ in T K in the continuous one:

T K, s |=c ϕ ⇔ T Kγha , (s, 0) |=p β (α (ϕ))

The key observation is that a path starting from a concrete configuration will reach the

finite bounds inf (I) and sup (I) at some concrete configurations. A path begining from an

abstract configuration will obtain the above interval bounds at some abstract configurations.

A path π satisfies the TCTL path formula ϕ1 U(a,b) ϕ2 with the open bound (a, b), if and

only if one of the following two conditions hold:

1. The initial configuration is concrete and the formula ϕ1 U[a+γh,b−γh] ϕ2, with the

contracted interval [a+ γh, b− γh] holds in π.

2. The initial configuration is abstract and the formula ϕ1 U[a,b] ϕ2, with the extended

interval [a, b] holds in π.

The above conditions are captured by the modification of a TCTL formula ϕ into the

TCTLcb formula α (ϕ), defined (for a general T Kτa such that τ is a divisor of γh) as follows.

Definition 47. TCTLcb formula α (ϕ): Let ϕ be a TCTL formula over AP, 0 < τ ∈ T

such that GCD (T K, ϕ) is a multiple of 2τ and T Kτa = (S, T ,→, L) is the abstract τ -

transformation of T K, so that L : S → P (APa) and APa = AP ] {pa}. The TCTLcb

formula α (ϕ) is inductively defined as follows:

α (true) = true;
α (p) = p;

α (¬ϕ1) = ¬α (ϕ1);
α (ϕ1 ∧ ϕ2) = α (ϕ1) ∧ α (ϕ2);

α (E ϕ1 UI ϕ2) = (¬pa ∧ E α (ϕ1) UI1 α (ϕ2)) ∨ (pa ∧ E α (ϕ1) UI2 α (ϕ2));
α (A ϕ1 UI ϕ2) = (¬pa ∧A α (ϕ1) UI1 α (ϕ2)) ∨ (pa ∧A α (ϕ1) UI2 α (ϕ2));
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where I1 is the time interval [a, b], with a and b two time values such that

a =

{
inf (I) if inf (I) ∈ I,
inf (I) + τ otherwise.

b =

{
sup (I) if sup (I) ∈ I,
sup (I) -̇ τ otherwise.

and I2 = [inf (I) , sup (I)].

Proposition 9. [72] Let ϕ be a TCTL formula over AP, 0 < τ ∈ T a time value such that

GCD (T K, ϕ) is a multiple of 2τ and T Kτa = (S, T ,→, L) the abstract τ -transformation of

T K, so that L : S → P (APa) and APa = AP ] {pa}. Then the following holds for each

state (s, δ) in T Kτa and each subformula ϕ′ of ϕ:

T Kτa, (s, δ) |=c ϕ
′ ⇔ T Kτa, (s, δ) |=p α (ϕ′) .

Proposition 10. Let AP be a set of atomic propositions and T K a timed Kripke structure

over AP whose time domain satisfies the theory TIMEgcd. Let ϕ be a TCTL formula over

AP, 0 < τ ∈ T such that GCD (T K, ϕ) is a multiple of 2τ and T Kτa = (S, T ,→, L) the

abstract τ -transformation of T K. Then for each state s of T K and each sub-formula ϕ′ of

ϕ:

T K, s |=c ϕ
′ ⇔ T Kτa, (s, 0) |=p β (α (ϕ′)) .

6.4 Model Checking for Discrete Time

In discrete time TCTL model checking for a formula ϕ and a timed Kripke structure T K can

be obtained by exhaustively visiting all time instants, which can be performed by splitting

each tick transition in T K with smaller ones of duration one (i.e., by model checking the

1-transformation of T K). When the time domain is N, all transitions in T K1 have duration

0 or 1.

Proposition 11. Let AP be a set of atomic propositions and T K a timed Kripke struc-

ture over AP whose time domain is N. Let ϕ be a TCTL formula over AP, and T K1 =
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(S,N,→, L) the 1-transformation of T K. Then for each state s of T K and each subformula

ϕ′ of ϕ:

T K, s |=c ϕ
′ ⇔ T K1, (s, 0) |=p ϕ

′.

The continuous interpretation of T K1 is equivalentand to the point-wise interpretation

of T K1 , since each tick step in T K1 is a maximal one, and therefore its one-step transition

relation uses only rules Ruletick1 and Ruletick2 in both interpretations. Model checking T K1

in the continuous semantics is equivalent to model checking it in the point-wise semantics

i.e., for each state s in T K1 and each sub-formula ϕ′ of a TCTL formula ϕ over AP:

T K1, (s, 0) |=c ϕ
′ ⇔ T K1, (s, 0) |=p ϕ

′.

The heavy price of obtaining soundness and completeness for discrete time in this method

has to do with the fact that visiting all discrete times typically result in a state space

explosion that renders model checking infeasible. For instance, this method is not sufficient

if discrete events do not occur for relatively long time intervals, e.g., if each tick transition

duration in the system and each finite time bound appearing in the formula is a multiple of

10000 time units.

A more efficient model checking method can be obtained by adapting the gcd-

transformation to the time domain N. The gcd-transformation is directly applicable to

timed Kripke structures over the time domain N, if the greatest common divisor γ is an

even number, i.e., if γh = half (γ) is defined.

If the greatest common divisor is odd but larger than 1, we can multiply each finite

constant appearing in the timed Kripke structure and in the TCTL formula by 2. This

transformation does not influence the TCTL semantics of the formula, but the greatest

common divisor becomes even, such that the procedure can be utilized. The following fact

formalizes that this scaling is satisfiability-preserving: For each state s in T K with time

domain N and each sub-formula ϕ′ of a TCTL formula ϕ over AP with GCD (T K, ϕ) > 1:

T K, s |=c ϕ
′ ⇔ ( 2. T K)γha , (s, 0) |=p 2 . β (α (ϕ′)) .
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where 2. T K is achieved from T K by multiplying each finite transition duration by 2, and

2 . β (α (ϕ′)) is achieved from β (α (ϕ′)) by multiplying each finite time value appearing in

some interval bound by 2.

If the greatest common divisor is 1 then the formula might evaluate in various way for

discrete and for dense time domains, since satisfaction might rely on whether there is any

configuration reachable between two successive discrete time points. Scaling up durations in

a discrete time domain with greatest common divisor 1 would correspond to inserting such

reachable configurations and therefore it could affect the evaluation of TCTL formulas in

the continuous semantics [72].

6.5 TCTL Model Checking in Point-Wise Semantics

TCTL model checking in point-wise semantics relies on the explicit-state CTL model check-

ing approach [12] that recursively calculates the set of reachable states satisfying the sub-

formula for each sub-formula of the desired TCTL formula:

1. show that any TCTL formula is equivalent to one in normal form, and

2. describe a model checking procedure for TCTL formulas in normal form.

The method is also based on the assumption that in the point-wise interpretation of

timed Kripke structures, all paths in the timed Kripke structure are time-divergent. A finite

timed Kripke structure T K is zeno-free iff it has no zero-time loops. Hence checking zeno-

freeness of T K can be performed in linear time as follows: Let T K0 be T K where all tick

transitions have been deleted such as only instantaneous transitions are left. Then T K is

Zeno-free iff T K0 has no loops.

The model described here adapts the one in [67], which is enhanced to handle formulas

with interval time bounds. Some core methods are also simplified, which is possible since

the assumption of Zeno-freeness excludes zero-time loops. For the reminder of the thesis s

stands for the configuration 〈s, 0〉 and s τ→ s′ is used for a step 〈s, 0〉 τ
↪→ 〈s′, 0〉.
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6.5.1 TCTL Normal Form

Definition 48. TCTL Normal Form: Given a set AP of atomic propositions and a time

domain T , TCTL formulas in normal form are built using the following grammar:

ϕ ::= true | p | ¬ϕ | ϕ ∧ ϕ | E G ϕ | E ϕ UI ϕ | A ϕ UI>0 ϕ

where p ∈ AP, I, I>0 ∈ Intervals (T ), and inf (I>0) = 0 /∈ I>0.

Figure 6.3 shows the list of the equivalences that can be applied to the sub-formulas of

a TCTL formula ϕ to reduce it to its normal form ϕ!. Equivalences might have a validity

condition (i.e., a condition under which they are applicable). The equivalences to formulas

are on sub-formulas that are not yet in normal form, as described by the application condi-

tions. They are used with a priority that relies on the order in which they are listed in the

figure: when more than one equivalence can be utilized for reducing the same formula, the

one listed first is selected. The right-hand side of an equivalence is not necessarily in normal

form and may require to be further reduced by utilizing other equivalences.

Equivalences (1)-(10) are given by the syntactic sugar in TCTL, with the exception

of Equivalences (7) and (8), which hold due to time divergence. Equivalences (11)-(19)

describe the reduction of universal quantifiers until formulas, refining time intervals until

only the permitted form A ϕ1 UI>0 ϕ2 is used. The unbounded case (11) is a well-known

CTL equivalence. Equivalences (12) and (13) follow directly from the following Equivalence

[67]:

(E1) A ϕ1 U≤c ϕ2 = (A F≤c ϕ2) ∧ ¬E (¬ϕ2) U (¬ϕ1 ∧ ¬ϕ2)

Equivalences (14) and (15), which hold due to the assumption of time-divergence, follow

directly from the following Equivalence [67]:

(E2) A ϕ1 U≥c ϕ2 = A G<c (ϕ1 ∧A ϕ1 U>0 ϕ2) if c > 0

Equivalences (16) and (17) extend (12) and (13) to a “general interval” time bound.

The formula on the right-hand side of Equivalence (16) is a conjunction, where ¬E F<a ¬ϕ1

specifies that ϕ1 must hold all the time before bound a is obtained in each behaviour,
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Figure 6.3: Equivalences for reducing a TCTL formula to its normal form.

¬E F=a (E ¬ϕ2 U>b−a true ) specifies that in each behaviour ϕ2 must hold somewhere in

the time interval [a, b], and ¬E F=a (E (ϕ1 ∧ ¬ϕ2)U (¬ϕ1 ∧ ¬ϕ2)) specifies that in each be-

haviour, once it is in the interval, ϕ1 must hold until a ϕ2-state is eventually reached.

Equivalences (18) and (19) also extend Equivalences (14) and (15) to a “general inter-

val” time bound. The right-hand side of (18) is the conjunction of two formulas, where

A G≤=a ϕ1 specifies that ϕ1 must hold all the time before the interval is obtained, while

A F=a

(
A ϕ1 U(0,b−a] ϕ2

)
specifies that in any path at time a a state is obtained where

(again in any path) ϕ1 holds until a ϕ2-state is achieved within the time-interval (0, b − a]

(“shifting” the interval (0, b−a] of a time units leadss to the interval (0+a, b−a+a] = (a, b]).

Since each equivalence in normal form maintains validity in the point-wise semantics, it can

be proven that:

T K, s |=p ϕ ⇔ T K, s |=p ϕ!.
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6.5.2 Core Model Checking Procedures

Procedures 1 to 3 are shown in Figure 6.4.

Procedure 1 shows a high-level overview of our TCTL model checking procedure. Con-

sider a timed Kripke structure T K = (S, T ,→, L), a state s ∈ S and a TCTL formula ϕ.

The model checking procedure MC (T K, s, ϕ) establishes whether T K, s |=p ϕ by recursively

calculating the satisfaction set of the normal form ϕ! of ϕ:

The recursive calculation of the satisfaction set Sat (T K, ϕ!) is performed as Procedure

2. It based on six core procedures, each taking care of a certain normal form modality

Procedure 3 outlines the algorithm Sat − EU (T K, ϕ) for calculating the satisfaction

set of a formula ϕ of the type E ϕ1 U ϕ2. The classic explicit model checking algorithm

for CTL is utilized [12]. All states satisfying ϕ2 also satisfy ϕ. The set of ϕ2-states (i.e.,

Q = {s ∈ Sat (ϕ2)}) is recursively closed with the set Qpre of all ϕ1-states, which are not

already in Q and which can reach some state in Q in one step, until a fixed-point is obtained.

Procesudes 4 and 5 are shown in Figure 6.5.

Procedure 4 describes the algorithm Sat−EG (T K, ϕ) for computing the satisfaction set

for a formula ϕ of the form E G ϕ1. The classic explicit model checking algorithm for CTL

is applied. Tarjan (Q,→) calculates all the states which are related to some non-trivial

strongly connected component of ϕ1-states (SCC (ϕ1)) over the given transition relation,

utilizing the well-known Tarjan algorithm for finding strongly connected components. From

each state in some (SCC (ϕ1)) there exists an infinite behaviour including ϕ1-states, since

each SCC consists of looping behaviours, therefore ϕ holds in these states. Then, this initial

set of states Q = {s ∈ Sat (ϕ1)} is recursively closed with the set Qpre of all ϕ1-states, which

are not already in Q and which can reach some state in Q in one step, until a fixed-point is

obtained.

Procedure 5 describes the algorithm Sat − EUb (T K, ϕ) for calculating the satisfaction

set for a formula ϕ of the form E ϕ1 U∼b ϕ2 with ∼∈ {≤, <}. The satisfaction set of

such a formula is calculated using the same procedure as the one in [67]. The procedure
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Figure 6.4: Core model checking procedures 1 to 3.
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Figure 6.5: Core model checking procedures 4 and 5.
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calculates the shortest distances from each ϕ1-state to a ϕ2-state along a (ϕ1 U ϕ2)-path.

The satisfaction set Qu of the untimed formula Qu = E ϕ1 U ϕ2 is computed first, and then

the shortest path calculation is limited to the graph G = (Qu,TR), where TR is the set of

transitions between ϕu-states, excluding outgoing transitions from ϕ2-states (because these

transitions would not contribute to discovering such shortest paths). The shortest distance

from each ϕ1-state to a ϕ2-state along the paths in TR is calculated using a variant of

Dijkstra’s shortest path algorithm. This is obtained by initially including in the set T of

(state, distance) pairs the ϕ2-states in Qu with distance zero, and then iteratively considering

the pair (s, τ) ∈ T with the minimum distance and adding it to T the set of pairs Tpre of

predecessors of s that can obtain a ϕ2-state through a transition in TR within the bound

b. The procedure returns the states having shortest distance within the bound, which are

stored in Q.

Procedure 6, shown in Figure 6.6 demonstrates the algorithm Sat − EUa (T K, ϕ) for

calculating the satisfaction set for a formula ϕ of the form E ϕ1 U∼a ϕ2 with ∼∈ {≥, >}

and either ∼ is equal to > or a 6= 0. This procedure is an adaptation of the one in [67]. In

general, a state satisfying ϕ appears on a path of the following type:

The procedure will calculate the following two sets of ϕ-states (intuitively identified

above by dashed boxes):

1. The set of states that satisfy ϕ because of a looping sequence of ϕ1-states leading

to some ϕ2-state; having a finite set of states, looping sequences of ϕ1-states can be

discovered by detecting SCC (ϕ1). Due to the assumption of time-divergence, any

non-trivial strongly connected component in T K has at least one tick transition with
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Figure 6.6: Core model checking procedure 6.
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a duration greater than 0.

2. The set of states that satisfy ϕ because of a simple (non-looping) (ϕ1 U ϕ2)-path,

whose duration is higher than the required time bound.

For calculating the first set of states the sets Q1 and Qu are first calculated as in Procedure

5. Then the set QSCC of states related to some non-trivial strongly connected components

of ϕ1 states in T K is determined by calling Tarjan (Q1,→). Q initially contains states which

are both in QSCC and satisfying E ϕ1 U ϕ2, and hence satisfy ϕ. The set Q is recursively

closed with the set Qu of all ϕ1-states, which are not already in Q and which can reach some

state in Q in one step, until a fixed-point is obtained. For the second set of states we limit

ourselves to the graph DAG (QDAG,TRDAG), where QDAG is the set of (E ϕ1 U ϕ2)-states

which do not relate to the first set of states, and TRDAG is the set of outgoing transitions

from ϕ1-states in QDAG.

Outgoing transitions from (ϕ2 ∧ ¬ϕ1)-states are not included in TRDAG, because they

are irrelevant to our aim of calculating the maximal durations from each ϕ1-state from

QDAG to any ϕ2-state along (ϕ1 U ϕ2)-paths. Having removed all cycles, DAG is a directed

acyclic graph, and the longest paths from a ϕ1-state to some ϕ2 state in it can be calculated

by traversing DAG in a backward-reachability fashion, such that the finding of the longest

distances follows an inverted topological ordering. During the calculation, T∗ includes those

states whose longest distance is established i.e., those states which have no outgoing transi-

tions left to visit; T includes the maximal currently known distances for those states which

have been detected so far, but still have some outgoing transition left to visit.

The calculation starts by setting in T∗ the distance of states without outgoing edges

(that are ϕ2-states by construction) to zero, while T will be initially empty. The algorithm

continues by taking and removing a longest-distance pair (s, τ) in T∗, adding s to Q if τ is

greater than the time bound and iteratively backward visiting its incoming edges. For each

detected predecessor s′ of s, if s′ is found for the first time then it is inserted together with
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Figure 6.7: Core model checking procedures 7 and 8.

its current distance in T; if s′ was already in T then, if needed, its distance is updated to

the current one; in any case, if all outgoing edges from s′ have been visited, then its longest

distance is known and this information is saved in T∗. The procedure terminates when T∗

becomes empty. In the end, Q includes all the states satisfying ϕ.

Procedures 7 and 8 are shown in Figure 6.7.

Procedure 7 describes the algorithm Sat−EUa,b (T K, ϕ) for calculating the satisfaction

set for a formula ϕ of the form E ϕ1 UI ϕ2 with finite interval bounds. This procedure is
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the same as Procedure 5, except that instead of recursively calculating the shortest paths

from ϕ1-states to ϕ2-states along (ϕ1 U ϕ2)-paths in T K, it calculates all the durations of

such paths within the upper time bound. It first calculates the satisfaction set Qu of the

untimed formula Qu = E ϕ1 U ϕ2, and limits the path duration calculation to the graph

G = (Qu,TR), where TR is the set of transitions between Qu-states, excluding outgoing

transitions from ¬ϕ1-states, since these transitions do not relate to any (ϕ1 U ϕ2) - path.

Then, it recursively computes distances from each ϕ1-state to some ϕ2-state along the paths

in TR. This is obtained by initially putting in the set T of (state, distance) pairs the ϕ2-

states in Qu with distance zero, and then iteratively taking any pair (s, τ) ∈ T and adding

to T the set of pairs Tpre, of (not already visited) predecessors of s that can reach a ϕ2-

state through a transition in TR within the upper time bound b. The procedure returns

the states having the shortest distance within the interval I, which are stored in Q. Due

to the assumption of time-divergence, which guarantees the absence of zero-time loops, the

above backward computation of the distances will eventually stop, because the distance will

eventually reach the time bound b.

Procedure 8 outlines the algorithm Sat−AU0 (T K, ϕ) for calculating the satisfaction set

for a formula ϕ of the form A ϕ1 UI ϕ2 with inf (I) = 0 /∈ I. The satisfaction set Qu of the

formula ϕu = A ϕ1 UI0 ϕ2 where I0 = I∪{0} is calculated; this formula can then be reduced

to its normal form utilizing Equivalences (11), (12), and (13). The remaining computation

is limited to the graph G = (Qu,TR), where TR is the set of transitions between Qu-states,

excluding outgoing transitions from ¬ϕ1-states, since these transitions do not relate to any

(ϕ1 U ϕ2) - path. Then the set of states which do not satisfy ϕ is calculated by recursively

closing the initial set of states

Q = {s ∈ Sat (Qu) | s has no outgoing transitions to Qu-states}

With those states that can obtain a state in Q in zero-time. Due to the time-divergent

assumption, which excludes the presence of zero-time loops in G, this can be performed by
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a backward closure over the zero-time transitions that reach a state in Q. The satisfaction

set of ϕ is hence given by excluding from the set of states satisfying ϕu the states in Q.

6.5.3 Correctness of the Model Checking Procedures

Let τmin (τmax) be the smallest (largest) non-zero transition duration notation in T K, |ϕ|

the number of sub-formulas in the TCTL formula ϕ, τϕ the largest finite time constant

appearing in the interval bounds of ϕ, and τ̄ = max (τmax, τϕ). The procedures required

to add two time values together or check that a time value is less than another time value,

etc. Because the time domain is not fixed, the complexity of the model checking procedure

relies on the complexity of these operations on the time values. In the following complexity

results it is assumed that the time values are natural numbers with the standard operations.

Proposition 12. Given a finite Zeno-free timed Kripke structure T K = (S, T ,→, L)

and a TCTL formula ϕ in normal form, Sat (T K, ϕ) terminates and has time complex-

ity O
(
|ϕ| . log (τ̄) .

(
|S|2 + |S| . |→| . K̄

))
,where K̄ = bτϕ/τminc+ 1.

The normalization of the formula ϕ may increase its size. In the worst case, it can be

shown that |ϕ!| is O
(
5d(ϕ) . |ϕ|

)
, where d (ϕ) is the maximal depth of nested until modal-

ities in ϕ. This follows from the fact that MC (T K, s, ϕ) includes a call to the procedure

Sat (T K, ϕ!).

Proposition 13. Given a finite Zeno-free timed Kripke structure T K = (S, T ,→, L) and a

TCTL formula ϕ, MC (T K, s, ϕ) terminates and has time complexity

O
(

5d(ϕ) . |ϕ| . log (τ̄) .
(
|S|2 + |S| . |→| . K̄

))
.

Sat (T K, ϕ) calculates the satisfaction set of the given (normalized) TCTL formula in

the point-wise semantics. It follows that the procedure MC (T K, s, ϕ) returns T K, s |=p ϕ.

Proposition 14. Given a finite Zeno-free timed Kripke structure T K = (S, T ,→, L) and a

TCTL formula ϕ in normal form,
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Sat (ϕ) = {s ∈ S | T K, s |=p ϕ} = Sat (T K, ϕ)

Proposition 15. Given a finite Zeno-free timed Kripke structure T K = (S, T ,→, L), a

state s ∈ S, and a TCTL formula ϕ, on termination of MC (T K, s, ϕ):

T K, s |=p ϕ ⇔ MC (T K, s, ϕ)

Point-wise model checking can be utilized to model check the (normalized) formula ϕ in

T K in the continuous semantics by model checking the modified formula β (α (ϕ)) in the

gcd-transformation T Kγha of T K in the point-wise semantics.

In practice, the modification β (α (ϕ)) of ϕ does not rise the size of the formula. In

particular, α (E ϕ1 UI ϕ2) = (¬pa ∧ E α (ϕ1)UI1 α (ϕ2) )∨ (pa ∧ E α (ϕ1) UI2 α (ϕ2)) and,

for each state, depending on whether the state is a pa -state or not, only one of the two

until formulas E α (ϕ1)UI1 α (ϕ2) and E α (ϕ1)UI2 α (ϕ2) needs to be calculated. A similar

reasoning can be performed in the transformation β (α) for formulas of the type A ϕ1 UI ϕ2.

In particular, β (ϕ2)∧(¬pa ∨ β (ϕ1)) = (¬pa ∧ β (ϕ2))∨(pa ∧ β (ϕ1) ∧ β (ϕ2)) and depending

on whether the state is a pa-state or not, only one of the two formulas β (ϕ1) and β (ϕ1) ∧

β (ϕ2) needs to be calculated. Computing the conjunctions or disjunctions introduced in

the transformed formula increases the computation time only by a constant value. Checking

whether a state is a pa-state or not also increases the time complexity by a constant value.

The slightly changed time bounds in the modification β (α (ϕ)) are irrelevant with respect to

the time complexity. In particular, the modified formula β (α) has the same time bounds as

ϕ, and for the modified formula α (ϕ) we may have τα(ϕ) = (Kϕ − 1) . γh, for an integer Kϕ

such that τϕ = Kϕ γh. Therefore, utilizing the point-wise model checker for model checking

a TCTL formula ϕ in the continuous semantics (which corresponds to the procedure call

MC (T Kτa, s, β (α (ϕ))) has the same time complexity as the procedure call MC (T Kτa, s, ϕ)

[72].

Proposition 16. Let AP be a set of atomic propositions and T K a finite Zeno-

free timed Kripke structure over AP whose time domain satisfies the theory TIMEgcd.
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Let ϕ be a TCTL formula over AP, 0 < τ ∈ T a time value such that

GCD (T K, ϕ) is a multiple of 2τ and T Kτa the abstract τ -transformation of T K.

Then for each state s of T K it holds that MC (T Kτa, s, ϕ) has time complexity

O
(

5d(ϕ) . |ϕ| . log (τ̄) .
(

(|S| . kmax)2 + |S| . |→| . kmax . (kϕ + 1)
))

where kϕ is an in-

teger value such that the greatest finite time bound in ϕ is equal to kϕ . τ , and kmax is an

integer value such that the largest non-zero transition duration in → is equal to kmax . τ .



Chapter 7

On the Equivalence of Timed
Automata and Timed Kripke
Structures in Dense Time

We have shown throughout this thesis that verification of real-time systems has proven fea-

sible for both Timed Automata and Timed Kripke Structures in the dense time domain.

They accomplish the same target which is verification and in the respect of this purpose

they are equivalent. Now we wonder how can we establish and actual algorithmic equiva-

lence between these two models for example, as a conversion between timed automata (TA)

and timed Kripke structures (TK) in the dense time domain. This has been answered posi-

tively in the untimed domain, where different constructive equivalence relations under CTL

between labeled transition system (LTS) and Kripke structures in the untimed domain have

been developed. The equivalences are inductive and algorithmic.

In this chapter we investigate the possibility of expanding the inductive conversion meth-

ods such as the two equivalence methods introduced in [26] to the dense time domain. We

identify the issues which make inductive conversions methods difficult and impractical in

dense time domain for concurrent and large scale real time systems.

84
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7.1 Constructing a Kripke Structure Equivalent with a Given
LTS

An LTS [25] is a tuple M = (S,A,→, s0) where S is a countable, non empty set of states,

s0 ∈ S is the initial state, and A is a countable set of actions. The actions in A are called

visible (or observable), by contrast with the special, unobservable action τ /∈ A (also called

internal action). The relation →⊆ S × (A ∪ {τ}) × S is the transition relation; we use

p
a→ q instead of (p, a, q) ∈→. A transition p a→ q means that state p becomes state q after

performing the (visible or internal) action a.

A path (or run) π starting from state p′ is a sequence p′ = p0
a1→ p1

a2→ ...pk−1
ak→ pk

with k ∈ N ∪ {ω} such that pi−1
ai→ pi for all 0 < i ≤ k. We use |π| to refer to k, the

length of π. If |π| ∈ N, then we say that π is finite. The trace of π is the sequence

trace (π) = (ai)0<i≤|π|,ai 6=τ ∈ A∗ of all the visible actions that occur in the run listed in

their order of occurrence and including duplicates. Note in particular that internal actions

do not appear in traces. The set of finite traces of a process p is defined as Fin (p) =

{tr ∈ traces (p) : |tr| ∈ N}. If we are not interested in the intermediate states of a run then

we use the notation p w⇒ q to state that there exists a run π starting from state p and ending

at state q such that trace (π) = w. We also use p w⇒ instead of ∃p′ : p w⇒ p′.

A process p that has no outgoing internal action cannot make any progress unless it

performs a visible action. We say that such a process is stable [96]. We write p ↓ whenever

we want to say that process p is stable. Formally, p ↓= ¬
(
∃p′ 6= p : p

ε⇒ p′
)
. A stable

process p responds predictably to any set of actions X ⊆ A, in the sense that its response

depends exclusively on its outgoing transitions. Whenever there is no action a ∈ X such

that p a→ we say that p refuses the set X. Only stable processes are able to refuse actions;

unstable processes refuse actions “by proxy”: they refuse a set X whenever they can internally

become a stable process that refuses X. Formally, p refuses X (written p ref X) if and only

if ∀a ∈ X : ¬
(
∃p′ :

(
p

ε⇒ p′
)
∧ p′ ↓ ∧p′ a→

)
.
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Method 1: Function K Converts an LTS into an Equivakent Kripke Structure

Definition 49. Equivalence between Kripke Structurs and LTS: Given a Kripke

structure K and a set of states Q of K, the pair K,Q is equivalent to a process p, written

K,Q ' p (or p ' K,Q), if and only if for any CTL∗ formula K,Q |= f if and only if p |= f .

Theorem 1. There exists an algorithmic function K which converts a labeled transition

system p into a Kripke structure K and a set of states Q such that p ' (K,Q). Specifically,

for any labeled transition system p = (S,A,→, S0), its equivalent Kripke structure k = K (p)

is defined as k = (S′, Q,R,′ L′) where

1. S′ = {〈s, x〉 : s ∈ S, x ⊆ init (s)}

2. Q = {〈s0, x〉 ∈ S′}

3. R′ contains exactly all the transitions (〈s,N〉 , 〈t, O〉) such that 〈s,N〉 , 〈t, O〉 ∈ S′, and

(a) for any n ∈ N, s n⇒ t

(b) for some q ∈ S and for any o ∈ O, t o⇒ q, , and item if N = ∅ then O = ∅ and

t = s (these loops ensure that the relation R′ is complete).

4. L′ : S′ → 2AP such that L′ (s, x) = x where AP = A

By utilizing function K conversion method, the semantics of CTL∗ formulae with respect

to a process rather than Kripke structure can be definedd. The resulting Kripke structure is

very compact, but a new satisfaction operator for sets of Kripke states is needed [26] (since

one state of a process can generate multiple initial Kripke states).

Method 2: Function X Converts an LTS into an Equivalent Kripke Structure

The need of a supplementary satisfaction operator can be eliminated using a different con-

version function [44], at the expense of a considerably larger Kripke structure.
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Theorem 2. There exists an algorithmic function X which converts a labeled transition

system into an equivalent Kripke structure. The function X is defined as follows: with

4 a fresh symbol not in A, given an LTS p = (S,A,→, s0) the Kripke structure X (p) =

(S′, Q,R′, L) is given by:

1. AP = A ]4;

2. S′ ∪
{

(r, a, s) : a ∈ A and r a→ s
}
;

3. Q = {s0};

4. R′ =
{

(r, s) : r
τ→ s
}
∪
{

(r, (r, a, s)) : r
a→ s
}
∪
{

((r, a, s) , s) : r
a→ s
}
;

5. For r, s ∈ S and a ∈ A : L (s) = {4} and L ((r, a, s)) = {a}.

Then p ' X (p).

In the resulting Kripkle structure, instead of combining each state with its corresponding

actions in the LTS (and thus possibly splitting the LTS state into multiple Kripke structure

states), the new symbol 4 is used to stand for the original LTS states. Every 4 state of

the Kripke structure is the LTS state, and all the other states in the Kripke structure are

the actions in the LTS. This ensures that all states in the Kripke structure corresponding

to actions that are outgoing from a single LTS state have all the same parent. This in

turn eliminates the need for the weaker satisfaction operator over sets of states. However, a

relatively straightforward modification to the CTL satisfaction operator is needed (to “jump

over” 4 states).

7.2 Issues in Constructing Equivalence Relations between
Timed Automata and Timed Kripke Structures in Dense
Time

We now investigate the possibility of expanding inductive conversion methods such as the

two conversion techniques in the untimed domain which are introduced in Section 7.1 to
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the dense time domain. We find out that developing such inductive conversions methods

between timed automata and timed Kripke structures is difficult and impractical in the

dense time domain for concurrent and large-scale real-time systems.

One of the main reasons which make the conversion of two systems impractical is the usage

of the converted systems.

In the untimed domain the conversion is utilized in the following framework: The LTS

semantics is used in model-based testing, where a test runs in parallel with the system

under test and synchronizes with it over visible actions. A run of a test t and a process p

represents a possible sequence of states and actions of t and p running synchronously. The

outcome of such a run is either success (>) or failure (⊥), and the outcome of applying

tests on processes establishes the failure trace testing preorder over processes. On the other

hand process equivalence can be determined with respect to their refusals, as follows: To

describe the behaviour of a process we need to record each refusal together with the trace

that causes that refusal. An observation of a refusal plus the trace that causes it is called

a stable failure. The stable failure preorder is then defined based on the relation between

traces and stable failures of the two processes. The stable failure preorder (which is based

on the behaviour of processes) can be readily converted into a testing-based preorder (based

on the outcomes of tests applied to processes).

While there are several other testing scenarios for the untimed domain, we focus on

failure trace testing and stable failures because the conversion functions mentioned earlier

are developed based on stable failures. Indeed, the conversion functions preserve CTL

properties which as a consequence were found equivalent to failure trace testing [26].

In the dense time domain however, it turns out that traces and by extension stable failures

are not useful. Two states are timed trace equivalent iff they generate the same timed words

i.e., sequences of input symbols and time increments. Timed trace equivalence is strictly

weaker than timed bisimilarity but incomparable to region equivalence and incomparable to

untimed bisimilarity. While timed trace equivalence is a congruence, it is computationally
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intractable. The undecidability proof for trace equivalence follows form the proof that the

language inclusion problem for timed automata over infinite words is undecidable.

Proposition 17. The problem of deciding if two initial states of a timed automaton are

timed trace equivalent is undecidable [62].

Proposition 18. The problem of deciding if two initial states of a timed automaton are

timed trace congruent is undecidable [62].

Proposition 19. Language (or trace) equivalence and inclusion checking are undecidable in

timed automata [7].

Proposition 20. Universality of timed automata is undecidable [8].

According to these results, timed trace equivalence, which would be the basis of stable

failure preorder, is undecidable on timed automata. Thus other equivalence relation (usually

some form of bisimilarity) are used in the dense time domain.

The problem of automated verification for timed concurrent programs is understood as the

problem of checking that a finite-state graph (model) related to the program satisfies a given

property formula. The complexity of checking a formula in the model is linear in the size

of the model, therefore, the principal barrier in the model generation is related to its size,

which can be prohibitive. Knowing in advance the properties, we can affect the process of

producing a model in such a way that the model we achieve is a minimal one preserving these

properties. Rather than producing minimal models for specific formulas, minimal models

preserving whole sub-classes of formulas (sub-languages) are produced. This is performed

by recognizing the equivalence preserved by a selected sub-language of the logic and then

producing a minimal model preserving this equivalence. We described the methods used to

produce minimal models preserving bisimulation (so CTL* and TCTL properties). Time

abstract bisimulation in particular preserves linear and branching time properties [19] [5]

[6].
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Another reason that makes the inductive conversion methods impractical in dense time,

especially for large-scale concurrent real-time systems is the infinite state space that comes

with the dense time domain. Timed automata are finite-state automata equipped with

clocks utilized to specify constraints on the amount of time that can elapse between two

events. The particularity of this model is that it utilizes a dense time domain which leads

to an infinite state space. We therefore need to apply minimization techniques such as

time-abstract bisimulation in order to obtain a finite state space. The time-abstracting

bisimulation equivalences converts the state space of a given timed automaton into a finite

graph (the quotient graph) which preserves sufficient information for verification. This

finite object is close to a Timed Kripke Structures which also has a finite representation.

The nodes of the finite quotient graph are classes (in fact, zones) each consisting of a set of

S of symbolic states and the edges represent either discrete state transitions or the passage

of an arbitrary amount of time. Symbolic states are represented as simple polyhedra and

ζ is a conjunction of atomic constraints on X (a finite set of clocks) defining a convex X -

polyhedron called the guard.

In other words, we cannot consider the original time automata for conversion (which

would produce an infinite Kripke structure), but we need to consider the quotient graph

instead. The nodes of the quotient graph are zones, each consisting of a set of S of symbolic

states which are represented as simple polyhedra, and a conjunction of atomic constraint

guards which are represented as convex X - polyhedra. It follows that they cannot be

converted to one state and one delay label, which would be needed in inductive conversion

methods. Indeed, should we convert all zones (set of states) and all X - polyhedron guards

to individual labelled states as the ones in timed Kripke structures we will face a huge state

explosion problem. We therefore conclude that inductive conversions methods do not work

for dense time domain in concurrent real-time systems.

State explosion is a famous problem that impedes analysis and testing relies on state-

space exploration. This problem is particularly serious in real-time systems since unbounded
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time values cause the state space to be infinite. The major weakness of any approach that

ignores this issue is that the size of the state space grows exponentially with the number

of processes. Kripke structures represent the state space of the system under investigation,

and thus their size is exponential in the size of the system description. Therefore, even for

systems of relatively modest size, it is often impossible to compute their Kripke structures

[35].

The conversion methods developed for the untimed domain are inductive and so they

suffer themselves to a certain degree from a state explosion problem since one state in the

original LTS can result in multiple equivalent states in the resulting Kripke structure. If

similar inductive conversion methods are applied in dense time domain, then all zones and

guards from the quotient graph will generate individual states as nodes and delays, with an

unmanageable state explosion situation.

This being said, it should be noted that many techniques have been proposed to over-

come state explosion. The main concept shared by all these techniques is the concept of

state equivalence, which allows the analysis of a system model utilizing another, equivalent

and more compact system model. The notion of equivalence is very useful for reducing the

state explosion when we focus on special behavior or properties of systems. In this con-

text, bisimulation-based equivalence relations are more effective for state-space reduction

in synchronous processes in comparison with failure-based equivalence relations, because

all the minimization algorithms developed based on failure-based equivalences increase the

number of states. That is, failure-based equivalences enlarge the number of states com-

pared to bisimulation-based equivalences, which in turn causes higher execution time for the

verification algorithms [63].

All failure-based equivalences method such as Stable failure equivalence, CFFD equiv-

alence, CSP-failure equivalence, and IOT-failure equivalence, are defined in terms of trace

semantics. In fact we argue that any stable failure model must be based on trace semantics.

Indeed, any stable failure must feature a trace component. Thus any minimization algorithm
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in a failure-based model must be at least PSPACE-complete. Add to this the undecidabil-

ity of many trace problems mentioned earlier, and we can conclude that a failure-based

approach is not useful for the dense time domain.



Chapter 8

Conclusions

In this thesis, we summarized that the Strong Time-Abstract Bisimulation method and its

properties which enable the infinite state-space of a given timed automata model to be

reduced to a finite quotient graph and finite transition system. We also show that time-

abstracted equivalence is decidable. Strong time-abstract bisimulation refines the dense

state-space while preserving both linear and branching time properties of the original model

sufficiently for verification. After the conversion one can utilize untimed verification tools

in order to verify real-time systems.

A procedure to check whether a system is free from timelocks and deadlocks was then

described. By extending the timed automata model systems to strongly non-zeno timed

automata the deadlocks and timelocks can be detected using the finite quotient graph. The

quotient graph can also be utilized to reduce model checking of TA to the untimed case so

that classical finite-state system verification methods such as CTL model checking can be

applied. In particular, TCTL model checking can be reduced to CTL model-checking using

strong time-abstracting bisimulation.

On the other hand, we summarized how the satisfaction of TCTL formulas under the

natural continuous semantics for both discrete-time and dense-time timed Kripke structures

can be reduced to a model-checking problem in the point-wise semantics for timed Kripke

structures. Discrete TCTL-preserving abstraction methods on timed Kripke structures, the

93
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so-called gcd-transformation and τ -transformation are introduced.

We show that the gcd-transformation and τ -transformation form a sound and complete

abstraction for timed Kripke structures with respect to the model checking of TCTL for-

mulas whose time intervals are closed time intervals. Model checking the abstraction in the

point-wise semantics is equivalent to model checking the original timed Kripke structure

in the continuous semantics. Definitions and abstract methods are developed that achieves

soundness and completeness for the whole TCTL logic (including open time intervals in the

temporal operators).

We then intended to put everything together by developing methods for converting timed

automata to equivalent time Kripke structures, using an approach similar to the one that

exists in the untimed domain. We found however that such inductive conversion methods

are infeasible in large-scale concurrent and real-time systems in the dense time domain. One

reason is that trace equivalence is undecidable for timed automata. The other reason is that

the nodes of the finite quotient graph of an infinite timed automaton system are labelled with

sets of states as well as constraints over clocks defining a convex X - polyhedron. Converting

these labels into atomic propositions and delays (like in timed Kripke structures) will result

in an intractable state explosion problem.

In all, we show that the establishment of an equivalence relation between timed automata

and timed Kripke structures based on inductive conversion methods is infeasible in the dense

time domain. We should also note in passing that the timed kripke structure system has

limited expressive power in comparison with timed automata in a dense time domain.
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[32] K. Čerāns, Decidability of bisimulation equivalences for parallel timer processes, in

International Conference on Computer Aided Verification, Springer, 1992, pp. 302–

315.

[33] Y. Chen, W.-T. Tsai, and D. Chao, Dependency analysis-a petri-net-based tech-

nique for synthesizing large concurrent systems, IEEE Transactions on parallel and

distributed systems, 4 (1993), pp. 414–426.

[34] S. C. Cheung and J. Kramer, Context constraints for compositional reachability

analysis, ACM Transactions on Software Engineering and Methodology (TOSEM), 5

(1996), pp. 334–377.

[35] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, Progress on the state

explosion problem in model checking, in Informatics, Springer, 2001, pp. 176–194.



BIBLIOGRAPHY 99

[36] E. M. Clarke and E. A. Emerson, Design and synthesis of synchronization skele-

tons using branching time temporal logic, in Workshop on Logic of Programs, Springer,

1981, pp. 52–71.

[37] E. M. Clarke, E. A. Emerson, and A. P. Sistla, Automatic verification of

finite-state concurrent systems using temporal logic specifications, ACM Transactions

on Programming Languages and Systems (TOPLAS), 8 (1986), pp. 244–263.

[38] E. M. Clarke, O. Grumberg, and D. E. Long, Model checking and abstraction,

ACM transactions on Programming Languages and Systems (TOPLAS), 16 (1994),

pp. 1512–1542.

[39] P. Darondeau, An enlarged definition and complete axiomatization of observational

congruence of finite processes, in International Symposium on Programming, Springer,

1982, pp. 47–62.

[40] J. W. de Bakker and J. I. Zucker, Processes and the denotational semantics of

concurrency, Information and Control, 54 (1982), pp. 70–120.

[41] F. S. de Boer, J. N. Kok, C. Palamidessi, and J. J. Rutten, On blocks: local-

ity and asynchronous communication, in Workshop/School/Symposium of the REX

Project (Research and Education in Concurrent Systems), Springer, 1992, pp. 73–90.

[42] R. De Nicola, Extensional equivalences for transition systems, Acta Informatica, 24

(1987), pp. 211–237.

[43] R. De Nicola and M. C. Hennessy, Testing equivalences for processes, Theoretical

computer science, 34 (1984), pp. 83–133.

[44] R. De Nicola and F. Vaandrager, Action versus state based logics for transition

systems, in LITP Spring School on Theoretical Computer Science, Springer, 1990,

pp. 407–419.



BIBLIOGRAPHY 100

[45] D. L. Dill, Timing assumptions and verification of finite-state concurrent systems,

in International Conference on Computer Aided Verification, Springer, 1989, pp. 197–

212.

[46] D. L. Dill and E. M. Clarke, Automatic verification of asynchronous circuits using

temporal logic, IEE Proceedings E (Computers and Digital Techniques), 133 (1986),

pp. 276–282.

[47] E. A. Emerson and E. M. Clarke, Characterizing correctness properties of parallel

programs using fixpoints, in International Colloquium on Automata, Languages, and

Programming, Springer, 1980, pp. 169–181.

[48] E. A. Emerson, A. K. Mok, A. P. Sistla, and J. Srinivasan, Quantitative tem-

poral reasoning, in International Conference on Computer Aided Verification, Springer,

1990, pp. 136–145.

[49] C. J. Fidge, I. J. Hayes, A. P. Martin, and A. Wabenhorst, A set-theoretic

model for real-time specification and reasoning, in International Conference on Math-

ematics of Program Construction, Springer, 1998, pp. 188–206.

[50] R. W. Floyd, Assigning meanings to programs, in Program Verification, Springer,

1993, pp. 65–81.

[51] D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi, On the temporal analysis of

fairness, in Proceedings of the 7th ACM SIGPLAN-SIGACT symposium on Principles

of programming languages, ACM, 1980, pp. 163–173.

[52] J. F. Groote and F. Vaandrager, Structured operational semantics and bisimu-

lation as a congruence, Information and computation, 100 (1992), pp. 202–260.

[53] O. Grumberg, E. Clarke, and D. Peled, Model checking, The MIT Press Cam-

bridge, 1999.



BIBLIOGRAPHY 101

[54] S. Guha, C. Narayan, and S. Arun-Kumar, Deciding timed bisimulation for

timed automata using zone valuation graph, 2012.

[55] M. Hennessy and R. Milner, On observing nondeterminism and concurrency, in

International Colloquium on Automata, Languages, and Programming, Springer, 1980,

pp. 299–309.

[56] , Algebraic laws for nondeterminism and concurrency, Journal of the ACM

(JACM), 32 (1985), pp. 137–161.

[57] T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine, Symbolic model check-

ing for real-time systems, Information and computation, 111 (1994), pp. 193–244.

[58] C. Hoare, Communicating sequential processes, Prentice-Hall, 1985.

[59] C. A. R. Hoare, S. D. Brookes, and A. W. Roscoe, A theory of communi-

cating sequential processes, Oxford University Computing Laboratory, Programming

Research Group, 1981.

[60] T. Hune and M. Nielsen, Timed bisimulation and open maps, in International Sym-

posium on Mathematical Foundations of Computer Science, Springer, 1998, pp. 378–

387.

[61] F. Jahanian and A. K. Mok, Modechart: A specification language for real-time

systems, IEEE Transactions on Software engineering, 20 (1994), pp. 933–947.

[62] B. Jonsson and J. Parrow, CONCUR’94: Concurrency Theory: 5th International

Conference, Uppsala, Sweden, August 22-25, 1994. Proceedings, vol. 836, Springer,

2006.

[63] E. Y. Juan and J. J. Tsai, Compositional Verification of Concurrent and Real-Time

Systems, vol. 676, Springer Science & Business Media, 2012.



BIBLIOGRAPHY 102

[64] J. R. Kennaway, Formal semantics of nondeterminism and parallelism, PhD thesis,

University of Oxford, 1981.

[65] L. Lamport, Verification and specification of concurrent programs, in Work-

shop/School/Symposium of the REX Project (Research and Education in Concurrent

Systems), Springer, 1993, pp. 347–374.

[66] , Real-time model checking is really simple, in Advanced Research Working

Conference on Correct Hardware Design and Verification Methods, Springer, 2005,

pp. 162–175.

[67] F. Laroussinie, N. Markey, and P. Schnoebelen, Efficient timed model checking

for discrete-time systems, Theoretical Computer Science, 353 (2006), pp. 249–271.

[68] K. G. Larsen, P. Pettersson, and W. Yi, Compositional and symbolic model-

checking of real-time systems, in Proceedings 16th IEEE Real-Time Systems Sympo-

sium, IEEE, 1995, pp. 76–87.

[69] , Uppaal in a nutshell, International Journal on Software Tools for Technology

Transfer (STTT), 1 (1997), pp. 134–152.

[70] K. G. Larsen and A. Skou, Bisimulation through probabilistic testing, Information

and computation, 94 (1991), pp. 1–28.

[71] K. G. Larsen and W. Yi, Time abstracted bisimulation: Implicit specifications and

decidability, in International Conference on Mathematical Foundations of Program-

ming Semantics, Springer, 1993, pp. 160–176.

[72] D. Lepri, E. Ábrahám, and P. C. Ölveczky, Sound and complete timed ctl model

checking of timed kripke structures and real-time rewrite theories, Science of Computer

Programming, 99 (2015), pp. 128–192.



BIBLIOGRAPHY 103

[73] D. Long, Model checking, abstraction, and compositional reasoning, Ph. D. Thesis,

Carnegie Mellon University, (1993).

[74] N. Lynch and F. Vaandrager, Action transducers and timed automata, Formal

Aspects of Computing, 8 (1996), pp. 499–538.

[75] N. A. Lynch and M. S. Tuttle, Hierarchical correctness proofs for distributed

algorithms., tech. rep., MASSACHUSETTS INST OF TECH CAMBRIDGE LAB

FOR COMPUTER SCIENCE, 1987.

[76] R. Milner, Calculi for synchrony and asynchrony, Theoretical computer science, 25

(1983), pp. 267–310.

[77] , Lectures on a calculus for communicating systems, in International Conference

on Concurrency, Springer, 1984, pp. 197–220.

[78] , Communication and concurrency, vol. 84, Prentice hall New York etc., 1989.

[79] , Operational and algebraic semantics of concurrent processes, in Formal Models

and Semantics, Elsevier, 1990, pp. 1201–1242.

[80] B. Mishra and E. Clarke, Hierarchical verification of asynchronous circuits using

temporal logic, Theoretical Computer Science, 38 (1985), pp. 269–291.

[81] T. Murata, Petri nets: Properties, analysis and applications, Proceedings of the

IEEE, 77 (1989), pp. 541–580.

[82] G. J. Myers, T. Badgett, T. M. Thomas, and C. Sandler, The art of software

testing, vol. 2, Wiley Online Library, 2004.

[83] E.-R. Olderog and C. A. R. Hoare, Specification-oriented semantics for commu-

nicating processes, Acta Informatica, 23 (1986), pp. 9–66.



BIBLIOGRAPHY 104

[84] R. Paige and R. E. Tarjan, Three partition refinement algorithms, SIAM Journal

on Computing, 16 (1987), pp. 973–989.

[85] D. Park, Concurrency and automata on infinite sequences, in Theoretical computer

science, Springer, 1981, pp. 167–183.

[86] I. Phillips, Refusal testing, Theoretical Computer Science, 50 (1987), pp. 241–284.

[87] G. D. Plotkin, A structural approach to operational semantics, (1981).

[88] A. Pnueli, The temporal logic of programs, in 18th Annual Symposium on Founda-

tions of Computer Science (sfcs 1977), IEEE, 1977, pp. 46–57.

[89] , Linear and branching structures in the semantics and logics of reactive systems,

in International Colloquium on Automata, Languages, and Programming, Springer,

1985, pp. 15–32.

[90] L. Pomello, Some equivalence notions for concurrent systems. an overview, in Euro-

pean Workshop on Applications and Theory in Petri Nets, Springer, 1985, pp. 381–400.

[91] J.-P. Queille and J. Sifakis, Specification and verification of concurrent systems

in cesar, in International Symposium on programming, Springer, 1982, pp. 337–351.

[92] G. M. Reed and A. W. Roscoe, A timed model for communicating sequential

processes, in International Colloquium on Automata, Languages, and Programming,

Springer, 1986, pp. 314–323.

[93] T. G. Rokicki and C. J. Myers, Automatic verification of timed circuits, in Inter-

national Conference on Computer Aided Verification, Springer, 1994, pp. 468–480.

[94] W. C. Rounds and S. D. Brookes, Possible futures, acceptances, refusals, and

communicating processes, in 22nd Annual Symposium on Foundations of Computer

Science (sfcs 1981), IEEE, 1981, pp. 140–149.



BIBLIOGRAPHY 105

[95] K. K. Sabnani, A. M. Lapone, and M. U. Uyar, An algorithmic procedure for

checking safety properties of protocols, IEEE Transactions on Communications, 37

(1989), pp. 940–948.

[96] S. Schneider, Concurrent and Real-time systems, John Wiley and Sons, 2000.

[97] R. H. Sloan and U. Buy, Stubborn sets for real-time petri nets, Formal Methods in

System Design, 11 (1997), pp. 23–40.

[98] K.-C. Tai and P. V. Koppol, An incremental approach to reachability analysis of

distributed programs, in Proceedings of the 7th international workshop on Software

specification and design, IEEE Computer Society Press, 1993, pp. 141–150.

[99] S. TaŞiran, R. Alur, R. P. Kurshan, and R. K. Brayton, Verifying abstrac-

tions of timed systems, in International Conference on Concurrency Theory, Springer,

1996, pp. 546–562.

[100] S. Tripakis, The formal analysis of timed systems in practice, PhD thesis, PhD thesis,

Université Joseph Fourier, 1998.

[101] S. Tripakis and S. Yovine, Analysis of timed systems using time-abstracting bisim-

ulations, Formal Methods in System Design, 18 (2001), pp. 25–68.

[102] A. Valmari, Compositional analysis with place-bordered subnets, in International

Conference on Application and Theory of Petri Nets, Springer, 1994, pp. 531–547.

[103] M. Y. Vardi, Alternating automata and program verification, in Computer Science

Today, Springer, 1995, pp. 471–485.

[104] S. Veglioni and R. De Nicola, Possible worlds process algebras, in International

Conference on Concurrency Theory, Springer, 1998, pp. 179–193.

[105] F. Wang, Formal verification of timed systems: A survey and perspective, Proceedings

of the IEEE, 92 (2004), pp. 1283–1305.



BIBLIOGRAPHY 106

[106] F. Wang, R.-S. Wu, and G.-D. Huang, Verifying timed and linear hybrid rule-

systems with red., in SEKE, 2005, pp. 448–454.

[107] C. Weise and D. Lenzkes, Efficient scaling-invariant checking of timed bisimula-

tion, in Annual Symposium on Theoretical Aspects of Computer Science, Springer,

1997, pp. 177–188.

[108] G. Winskel, Synchronization trees, Theoretical Computer Science, 34 (1984), pp. 33–

82.

[109] W. J. Yeh and M. Young, Compositional reachability analysis using process algebra,

in Symposium on Testing, Analysis, and Verification, 1991, pp. 49–59.

[110] W. Yi, Ccs+ time= an interleaving model for real time systems, in International

Colloquium on Automata, Languages, and Programming, Springer, 1991, pp. 217–

228.

[111] W. Yi, P. Pettersson, and M. Daniels, Automatic verification of real-time

communicating systems by constraint-solving, in Formal Description Techniques VII,

Springer, 1995, pp. 243–258.

[112] T. Yoneda and B.-H. Schlingloff, Efficient verification of parallel real–time sys-

tems, Formal Methods in System Design, 11 (1997), pp. 187–215.

[113] T. Yoneda, A. Shibayama, B.-H. Schlingloff, and E. M. Clarke, Efficient

verification of parallel real-time systems, in International Conference on Computer

Aided Verification, Springer, 1993, pp. 321–332.



Appendix A

Timed Automata

Proposition 21. The reachability problem in timed automata is PSPACE- complete [8].

Proposition 22. Any two automata being timed bisimilar are also time-abstracted bisimilar

[20].

Proposition 23. Time-abstracted similarity and bisimilarity are decidable for timed au-

tomata [20].

Proposition 24. Timed similarity and bisimilarity are decidable for timed automata [32].

Proposition 25. TCTL model checking is PSPACE-complete [4].

Proposition 26. TCTL satisfiability is undecidable [4].

Proposition 27. The language-inclusion problem for timed automata is undecidable, both

over finite and infinite words [8].

Proposition 28. The problem of deciding if two initial states of a timed automaton are

timed trace equivalent is undecidable [62].

Proof. The undecidability proof for ≡tt follows the proof that the language inclusion problem

for timed automata over infinite words is undecidable [8].

Theorem 3. If A is strongly non-zeno then every infinite run of A is non-zeno.

107
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Proof. Let ρ = s1
δ1→ e1→ s2

δ2→ e2→ ... be an infinite run of A. Since A has only a finite

number of edges, there exist some i1, i2, ..., im such that ei1, ei2, ..., eim form a structural

loop and ρ takes infinitely often every discrete transition eij . There exist also a clock x and

j1, j2 ∈ {i1, i2, ..., im} such that x ∈ reset (ej1) and (x < 1) ∩ guard (ej2) = ∅. Now, each

time ρ takes an ej1-transition, clock x is reset to 0. The next time ρ takes an ej2-transition,

at least 1 time unit has passed, since x must be greater or equal to 1 for ej2 to be taken.

Since ej1- and ej2 -transitions are taken infinitely often, an infinite number of 1-time-unit

delays are accumulated, so ρ is non-zeno.

Theorem 4. If A, A′ are strongly non-zeno so is A ‖ A′.

Proof. Note that any structural loop of A ‖ A′ contain a structural loop of either A, or A′,

or both. Therefore, any structural loop of A ‖ A′ satisfies the conditions of Theorem 3 which

implies that A ‖ A′ is strongly non-zeno.

Theorem 5. A strongly non-zeno TA is also timelock-free.

Proof. A state s is a timelock if all infinite runs starting from s are zeno. A is timelock-free

if none of its reachable states is a timelock, and by Theorem 3 if A is strongly non-zeno then

every infinite run of A is non-zeno.

Theorem 6. If S is a zone then time-pred(S) and disc-pred(e, S) are also zones.

Proof. Nore first that the reset, backward projection and intersection operations preserve

convexity of polyhedra.

A polyhedron ζ is called convex if it can be specified as the intersection of a number of

hyperplanes. If ζ is non-convex then it can be written as ζ1 ∪ ...∪ ζk, where ζ1, ..., ζk are all

convex.

The operations ζ [Y := 0] (post-reset) and [Y := 0] ζ (pre-reset) are defined as:

ζ [Y := 0]
def
= {v [Y := 0] | v ∈ ζ}
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[Y := 0] ζ
def
= {v | v [Y := 0] ∈ ζ}

The backward projection of an X -polyhedron ζ is defined as :

↙ ζ
def
= {v | ∃ δ ∈ R . v + δ ∈ ζ}

It can be seen that if ζ is convex then ↙ ζ is also convex.

The region graph is too large to be of any practical interest: its size is exponential in the

number of clocks of the system as well as in the size of the constants utilized in the timing

constraints. In order to manage the sate explosion, time-abstracting bisimulations were

proposed. They induce a much coarser untimed state space. In fact, the region equivalence

is a strong time-abstracting bisimulation.

Theorem 7. The region equivalence is a strong time-abstracting bisimulation.

Proof. It can be proven that the region equivalence (RegEq) [4] is a strong TaB. This implies

in particular that the quotient of a TA A in terms of the greatest STaB defined on A is finite.

Informally, two states (q,v) and (q,v′) are region equivalent if v and v′ agree on the

integral parts of all clock values and have the same ordering of the fractional parts of all pairs

of clock values. More formally, let bδc be the greatest integer smaller than δ, for δ ∈ R. Let

〈δ〉 be δ−bδc. Consider a TA A with set of clocks X and let c ≥ cmax (A). Two X -valuations

v and v′ are region equivalent, denoted v 'c v′ if: (a) for all x ∈ X , either bv (x)c = bv′ (x)c

or (v (x) > c ∧ v′ (x) > c);(b) for all x, y ∈ X , either bv (x)− v (y)c = bv′ (x)− v′ (y)c, or

(v (x)− v (y) > c ∧ v′ (x)− v′ (y) > c).

For any c ∈N, 'c is an equivalence relation, whose equivalence classes are called regions.

The region equivalence can be extended to states of A so that (q,v) is equivalent to (q′,v′)

if q = q′ and v 'c v′.

Let (q,v) 'c (q,v′). Observe that:

1. For any c-closed X -polyhedron ζ (in particular, any guard or invariant of A), v ∈ ζ iff

v′ ∈ ζ;
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2. For any set of clocks X ⊆ X ,v [X := 0] ' v′ [X := 0];

3. For any δ ≥ 0 there exists δ′ ≥ 0 such that v + δ ' v′ + δ′.

Now, if (q,v)
e→ (q1,v1) is a discrete transition, then (q,v′)

e→ (q1,v
′
1) is also a dis-

crete transition, since both v and v′ satisfy guard (e). Also, (q1,v1) ' (q1,v
′
1), since

v [reset (e) := 0] ' v′ [reset (e) := 0]. Let (q,v)
δ→ (q,v + δ) be a time transition. There

exists δ′ ≥ 0 such that v + δ ' v′+ δ′. v′ and v′+ δ′ satisfy invar (q), since v and v + δ do.

v′+δ′′ satisfies invar (q) for any δ′′ < δ′, by convexity of invar (q). Thus, (q,v′)
δ′→ (q,v′ + δ′)

is also a time transition.

The following definition is useful to prove an important property of STaBs which is based

on the passage of time namely, that STaBs preserve branching-time properties.

Definition 50. Time transitions traversing classes: Consider a TA A and a STaB

≈ on A. Given a time transition of A, s δ→ s + δ, and m different classes C1, ..., Cm, the

transition is said to traverses C1, ..., Cm if:

1. s ∈ C1 and s+ δ ∈ Cm.

2. For all 0 < δ′ < δ, there exists 1 ≤ i ≤ m such that s+ δ′ ∈ Ci.

Theorem 8. Any time transition traverses a unique (finite) set of classes.

Proof. Consider a time transition s
δ→ s + δ and let m be the number of different points

0 < δ1 < ... < δm < δ such that s + δi and s + δi+1 belong to different classes (there is a

finite number of such points since the quotient is finite). The proof is by induction on m. If

m = 0, then s, s+ δ ∈ C1, for some class C1. We show that s+ δ1 ∈ C1 for all 0 < δ1 < δ.

Assume the opposite, s + δ1 ∈ C2 for some C2 6= C1. Then, since C1
τ→ C2 (from the fact

that s δ1→ s+ δ′) and C2
τ→ C1 (from the fact that s+ δ1

δ−δ1→ s+ δ), we can build an infinite

sequence C1
τ→ C2

τ→ C1
τ→ C2.... But this is not possible, since we assumed ≈ to be weaker

than the region equivalence 'c and after the upper bound c all states are equivalent. The

induction step is straightforward.
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Theorem 9. If s ≈ s′ then for any time transition s δ→ s+ δ, there exists a time transition

s′
δ′→ s′ + δ′ such that s+ δ ≈ s′ + δ′ and the two transitions traverse the same classes.

Proof. Let C1, ..., Cm be the classes traversed by s
δ→ s + δ. The proof is by induction

on m. If m = 1, then s ≈ s + δ and it suffices to take δ′ = 0. For simplicity, instead

of proving the general induction step, we assume that m = 2, that is, s δ→ s + δ traverses

classes C1, C2. The extension to any m > 1 is easy using the induction hypothesis. We have:

s, s′ ∈ C1, s+δ, s+δ
′ ∈ C2, for some δ′. We want to show that for all δ1

′ < δ′, s′+δ1
′ ∈ C1∪C2.

Assume this is not the case, that is, s′+δ1
′ ∈ C and C is different from C1, C2. Since s′ ≈ s,

there exists s δ1→ s+ δ1 such that s+ δ1 ∈ C. From the fact that s δ→ s+ δ traverses C1, C2

and condition 2 of the definition of traversal, it must be that δ1 > δ. Thus, C2
τ→ C (from

the fact that s+ δ
δ1−δ→ s+ δ1). On the other hand, C τ→ C2 (from s′ + δ1

′ δ′−δ1′→ s+ δ′). We

can build an infinite sequence C2
τ→ C

τ→ C2
τ→ C... contradicting the hypotheses.

Theorem 10. Let A be a strongly non-zeno TA and ≈ be a strong time-abstracting bisim-

ulation on A. For any CTL formula φ and any pair of states s ≈ s′, s |= φ iff s′ |= φ

Proof. This theorem can be proved by induction on the syntax of φ. The basis comes directly

from the hypothesis that ≈ respects P . The interesting induction steps are for φ = ∀φ1Uφ2

or φ = ∃φ1Uφ2. The latter case is considered for proving, the former being similar. Assume

that s |= ∃φ1Uφ2. Then, there exists a non-zeno run ρ = s
δ1→ e1→ ... and some point i along

ρ such that ρ (i) + δi |= φ2 and for all j ≤ i, δ ≤ δj , ρ (j) + δ |= φ1 ∨ φ2. From the fact that

s ≈ s′ , a run ρ′ = s′
δ1
′
→e1′→ ... is built, such that sj ≈ s′j and sj+δj ≈ s′j+δ′j , for all j. From the

strongly non-zeno hypothesis, ρ′ is non-zeno. From the induction hypothesis, ρ′ (i)+δ′i |= φ2

and for all j ≤ i, ρ′ (j) + δ′j |= φ1 ∨ φ2. It must be shown that ρ′ (j) + δ′ |= φ1 ∨ φ2, for all

δ′ ≤ δ′j . Then for any δ′ ≤ δ′j , there exists δ ≤ δj such that s′j + δ′ ≈ sj + δ. The result

follows from the induction hypothesis.

Theorem 11. Every run ρ is inscribed in a unique path π in G ≈. Inversely, if π = C1 →
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C2 → ... is a path in G ≈ then for all s1 ∈ C1 there exists a run ρ starting from s1 and

inscribed in π.

Proof. A straightforward modification of the proof of Lemma 3.35 of [2].

Theorem 12. C ∈ ctl-eval (φ) iff for all s ∈ C, s satisfies φ.

Proof. The theorem can be proved by induction on the syntax of φ. The basis (φ is an

atomic proposition) comes from the fact that ≈ respects P . The case for φ1 ∨ φ2 is trivial.

In the case where φ is of the form ∃ φ1Uφ2, assume that C ′ ∈ ctl-eval (φ) , C ∈ ctl-eval (φ1)

and C τ→ C ′. Let s ∈ C. There exists δ such that s δ→ s+ δ and s+ δ ∈ C ′. By induction,

s+ δ satisfies φ and s satisfies φ1. Now, for any δ′ < δ, s+ δ′ ∈ C ∪C ′ (here the fact that C ′

are the immediate time successors of C is utilized). By Theorem 9 and the fact that s+ δ′

is STa-bisimilar either to s or s + δ, we have s + δ′ |= φ1 or s + δ′ |= φ, thus, s |= φ. The

case C e→ C ′ is similar.

Consider the case where φ is of the form ∀φ1Uφ2. Let C 6∈ ctl-eval (φ). Since A is deadlock-

free, there is an infinite path inG, π = C → C1 → ..., and some i, such that Ci 6∈ ctl-eval (φ1)

and for all j < i, Cj 6∈ ctl-eval (φ2). Also note that π contains only a finite number of τ -

transitions, since there are no τ -self-loops in G. Finally, π is non-zeno, since A is strongly

non-zeno. Thus, by Theorem 10, we can extract from π a non-zeno run which falsifies

∀φ1Uφ2.

Development of Partition Refinement Algorithm to the Timed Case The parti-

tion refinement algorithm form the timed case will generate the finite graph G. The state

space of TA consist of two types of predecessors, corresponding to discrete and time tran-

sitions of the TA. The MMGA algorithm is adapted to infinite state spaces; they accept

an effective representations of classes and decision ways in order to calculate intersection,

set-difference and predecessors of classes, and testing whether a class is empty. It must be

ensured that a pre-stable partition always exists for termination. The adapted algorithm is

called time-abstracting MMGA (TA-MMGA).
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Correctness of the algorithm is based on the definitions of the predecessor operators.

Termination is ensured by Theorem 6. which means, the algorithm will produce the partition

induced by the region equivalence in the worst case.
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