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Abstract

Security in Information Technologies is an ever-changing field due to the fact that threats

appear constantly with newer, more complex methods of attack as time goes on. Constant updates are

therefore necessary on the systems which perform the operations, as well as the knowledge-pool of the

personnel in charge of their security. With that in mind, it is also imperative to establish that while a

team of human resources may be in charge of a system, they cannot realistically overview and monitor

every single operation of it in order to detect anomalies or incidents that could jeopardize individual

operations or in some cases, the entire system. As such, we argue that countermeasures against

potential threats and attacks should be performed by the system itself while allowing it to remain

useful. In addition, precise and concise notifications should be issued to the human resources in charge

of such systems whenever threats and attacks are detected. That is the basis for our work: allow

protection of a system while minimizing operational impact and issue proper notifications with precise

data to the human resources.    

The work outlined in this thesis addresses issues with cyber attack techniques that make use of

certain logical address manipulations such as buffer overflows and code injection in GNU/Linux

systems. The development of the solution explained in this document picks up where others left off,

and so is mainly based on an earlier approach that was left at a proof-of-concept stage. We take this

approach to a real-world scenario while attempting to remain true to the previous statements about the

protection of systems and how feasible it can be. 

Specifically, we develop a working, tested code that evaluates an executing process under

GNU/Linux environments and whenever a call opcode has been detected, it stores and manages the

corresponding stack pointer, which then gets validated once a ret opcode is found. This is performed
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during execution-time, which makes it a valuable tool to intercept buffer overflow attacks in real-time. 
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1 Introduction

As a species we have developed countless technologies and systems that allow us to simplify

and automate tasks while constantly innovating and reinventing them as we see fit. In modern times we

have witnessed the rise of drone and robotics technology for both military and civilian applications as

well as in other areas of human activity, such as health care, marine biology and more [1]. The overall

objective is simple: automate tasks that would be otherwise performed by humans, which allows for

better resource and time management and in some cases, mitigates or transfers the risk to the automated

system. Our work keeps up with the current trend of automated technologies. That is, we aim to

automate a task that will protect a GNU/Linux operating system from a specific type of cyber attack. In

order to accomplish this, some background is necessary.

The operating system GNU/Linux has been around for quite some time, it has been praised for

having its code available to users, as well as for the vast number of devices on which it can operate.

Linux is the kernel, while the GNU libraries are a set of files that work on top of the Linux kernel and

allows it to perform tasks at a user-friendly level. In short, GNU/Linux is a proven and established

operating system widely used by industries worldwide. As it would be expected from such a widely

used system, malicious attempts at penetrating and modifying the system or operations under

GNU/Linux are a common occurrence. It is there where Information Technology experts come into

play by developing and constantly updating measures to both react to detected anomalies in the systems

and prevent security incidents. Some of the viruses under GNU/Linux environments [2] date back to

the mid-90's. In 1996 the virus Staog appeared and took advantage of a flaw in the kernel to attach

itself to certain files. The 2000's saw the rise of more complex viruses with the Binom virus which

expands the size of files, the Lupper worm which operates under Web servers and enables remote shell

command execution, as well as many others. In the current decade we have seen the rise of even more

integrated and complex viruses that take advantage of the habits of the contemporary user. Examples
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include the Koobface virus, which spreads through networking sites, and once having successfully

infected a system attempts to obtain the credentials for File Transfer Protocol (FTP) or social

networking sites, which are then used to spread it around. Evidently, as time goes on the complexity

and scope of these viruses increase and the people in charge of protecting these systems are under an

ever-changing, constant threat. It is here where we recall the current trend of automation technologies,

and attempt to produce an applicable result to protect GNU/Linux systems from a specific type of cyber

attack.

The type of attack we will detect automatically deals with stack pointers in GNU/Linux

systems. A well-known example of this attack is a buffer overflow. A study that surveyed Common

Vulnerability Scoring System (CVSS) data between 1988 and 2012 [33] showed that buffer overflows

were the most often reported vulnerability, with 7,809 cases reported over the last 25 years, which

amounts to roughly 14% of the 54,000 vulnerabilities that were assigned CVSS ratings. In further

sections we will explore to a greater depth what it is and how it operates, but to sum it up buffer

overflow attacks take advantage of flaws in the code of an executing process to overwrite values in

memory. The outcome of an overflow usually leads to an error in the execution of the program, but if

the attack is performed by a malicious entity the overwriting process could lead to the execution of

code which is alien to the actual process being executed. Another type of attack is code injection, which

uses flaws in either the code of the process being executed, or takes advantage of other methods like

memory manipulation to overwrite code into the current executing process which leads once again to

malicious code being executed. The common denominator for these attacks is the use of stack pointers.

Therefore, we establish the following objectives for our work:

1) Develop a countermeasure against stack pointer manipulation in the GNU/Linux operating systems.

2) Automate the detection process during execution-time.

3) Notify the system administrator in real-time.

4) Minimize the consumption of system resources.

With the objectives laid out, we then develop our solution using the ptrace tool as our main

framework. With it, we are capable of performing a number of tasks that will allow us to execute a

process, halt it, review it, perform a desired task, and proceed to either the very next instruction or until

we find a specified instruction or system call. This is all performed during execution and in real time,

      
       CHAPTER 1. INTRODUCTION                                                                                                                 2



which in turn allows us to react appropriately. For our case, should an anomaly be detected we stop the

process and issue a notification through the network to the system administrator with precise

information that should the need arise can be potentially valuable during a forensic examination. This

execution-time approach offers an alternate perspective to already-implemented approaches such as

Address Space Layout Randomization (ASLR) and stack canaries, which rely on preventing issues

before they occur. By contrast, our approach relies on reacting to anomalies whenever they happen. 

In order to understand these mechanics to a greater depth, we will next proceed to overview the

necessary concepts and background (Chapter 2).  The previous work related to our pursuit is reviewed

in Chapter 3.  Our solution is then presented in Chapter 4 and subsequently evaluated in Chapter 5.

Comments on the advantages and limitations of the proposed solution are included in Chapter 6. 
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2 Preliminaries

2.1 Assembly code

According to Techopedia [3] “An assembly language is a low-level programming language for

microprocessors and other programmable devices. It is not just a single language, but rather a group of

languages. Assembly language implements a symbolic representation of the machine code needed to

program a given CPU architecture.”

These languages are usually quite complex and lack high-level conveniences such as variables

and functions. They also change according to the processor they run on. Due to this being the most

basic programming language available for a given processor, it makes it especially useful when dealing

directly with the Central Processing Unit (CPU) and its operations.

2.2 Memory addresses

Following once more the simple definitions given by Techopedia [4], “A memory address is a

unique identifier used by a device or CPU for data tracking. This binary address is defined by an

ordered and finite sequence allowing the CPU to track the location of each memory byte.”

In short, this is the nomenclature used to reference the memory spaces available in the system. 

2.3 Architectures

Architectures are a set of instructions developed for computer processors [5]. The architectures

that we will work with are the 32-bit architecture for Intel processors (usually defined as x86) and the
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64-bit architecture for the same family of processors (usually named x64). It should be noted however

that other architectures also exist.

The difference between 32-bit and 64-bit architectures are the size of the data units, which is 32

bits and 64 bits, respectively.  Operating systems like Windows 95, 98 and XP were common on

computers with 32-bit processors. Operating systems like Windows Vista, Windows 7 and Windows 8

come in 64-bit versions.  It is important to note that while software developed for 64-bit systems cannot

be executed in 32-bit machines, 32-bit software can potentially be executed in 64-bit machines if

certain necessary conditions are met; however, one cannot not run 16-bit legacy programs on 64-bit

machines [6]. Another difference is the maximum amount of Random Access Memory (RAM) that is

supported. For 32-bit computers the maximum amount is three to four GB of memory, while for 64-bit

computers, they can support amounts well over four GB. This also translates into faster processing for

64-bit architectures. There are many more differences, especially at the technical level; however this

information should suffice as a general overview for the purposes of our work. It is worth mentioning

that GNU/Linux distributions are usually available for both architectures.

2.4 Registers

The operations undertaken by a processor involve processing data. Such data is stored in the

RAM, which is orders of magnitude slower than the processor. Registers are therefore built into the

processor chip. Their purpose is to store data elements without accessing the main memory; this

improves processing time considerably.

Each architecture has its own set of registers. It is also important to note that there are various

types of registers, for example: segment registers, control registers, index registers, pointer registers

and more. For the purpose of our work, the registers that we will be dealing with are the pointer

registers. Pointer registers can be classified in three categories [7]:

1) Instruction pointer: Stores the address of the next instruction to be executed.

2) Stack pointer: Stores the current position within the program stack.

3) Base pointer: References the parameter values passed to a subroutine.

Data registers change from architecture to architecture and are used for arithmetic, logical and
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other operations. We will only work with 32-bit and 64-bit architectures, so we provide this brief

technical overview only for these architectures.

For 32-bit architectures, the data registers are EAX, EBX, ECX, and EDX. These can be used in

three ways: we can use them as complete 32-bit data registers, the lower halves can be used as four 16-

bit data registers AX, BX, CX and DX, or the lower and higher halves of these 16-bit registers can be

used as eight 8-bit data registers: AH, AL, BH, BL, CH, CL, DH and DL. 

For the purpose of our work, 64-bit machines operate in effectively the same way. Nonetheless

some changes in the use of registers do happen, meaning that while a register for a 32-bit machine is

EAX, the equivalent for a 64-bit machine would be RAX. A stack pointer for a 32-bit machine would

be ESP, while for a 64-bit machine it will be RSP. To summarize the difference with an extremely

rough definition: “E” is for 32-bit and “R” for 64-bit. However it must be said that there are several

other differences; given the complexity of the topic, this rough definition was given in order to over-

simplify a complex definition into something that applies to our work, given the established constraints

and scope.

2.5 Opcodes

Opcodes are values that represent procedures in the execution of a process. For the purposes of

our work, we will only deal with the opcodes for call and ret:

Instruction Opcode

Call E8

FF

9A

REX.W + FF

Ret C3

CB

C2

CA

Table 1: Opcodes
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These vary from architecture to architecture, but as previously mentioned we will only deal with

the 32-bit and 64-bit architectures and therefore we refer to the official Intel manuals [8], which contain

the list of all possible opcodes as well as their explanation. The purpose of the opcodes mentioned

above will be exemplified later (in the next section) due to their role in the execution of a process. We

can validate that these opcodes are contained within the long strings of hexadecimal values which

represent the instructions to be executed.

2.6 Stack

The stack is defined as a push-down or Last In First Out (LIFO) list that contains data [9]. For

the purpose of our work we will only consider the stack where the hexadecimal values of the memory

addresses associated with calls and rets are stored, so we refer henceforth to this stack simply as “the

stack”. We can visualize the behavior of the stack by following the execution of a process at an

assembly code-level, as follows (in this example, the processor is little-endian):

We begin the trace of the execution flow from a call:

At this point (that is, before the execution of the call) we will check the stack:

As we can see the stack has no stored value at the beginning of our execution. We will now

execute the call and then we will check the stack again:

Illustration 1: Call execution
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We now have a value stored on the stack. Indeed, whenever a call is issued in the execution of a

process, a return value will be stored on the stack in order to allow the process to come back (return) to

it. This is the behavior of the call/ret pair. We will now continue the execution process until another call

is found:

We are expecting the stack to keep storing data as a push-down list. Let us visualize the stack at

this stage:

Evidently, some values have been pushed onto the stack, but since we are following calls, we

now expect to have another ret value stored into the top of the stack when we execute the call. Indeed,

checking the stack at this point in the execution (after the call is executed) confirms this:

Illustration 4: Call execution

Illustration 5: Stack viewer
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We continue the execution flow until we find a ret to the original call from Illustration 1:

When we execute it, we should return to the address 34fc801428:

Indeed, we are now back to the corresponding address as expected and the value in the stack 

Illustration 6: Stack viewer

Illustration 7: Return

Illustration 8: Return
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was pushed out.

2.7 GNU/Linux

Linux is a kernel, meaning that it is a program that manages the resources of a system (in other

words, the core). GNU can be defined in many ways but to to give the briefest description it is a series

of libraries that operate on top of the Linux kernel, which in turn allows this kernel to perform many

tasks that would otherwise not be possible [10]. On top of that, we get distributions, which are

essentially versions of GNU/Linux that are packaged with useful software like multimedia players and

more.  

The combination of both is commonly referred to just as Linux. However, they are as we

already mentioned different. GNU/Linux comes in many versions which are called distributions. A

relatively popular distribution is Ubuntu so it might be easier to recognize GNU/Linux by this name for

the purpose of this section. However, since one of our objectives is to consider GNU/Linux as a whole,

we will focus on the top three most popular distributions, which are Ubuntu, Fedora and OpenSUSE

[11]. While an argument could be made that more distributions such as Linux Mint, Debian, RedHat,

CentOS, Arch, etc. are also popular, we had to limit the scope of our work in order to avoid

unnecessary consumption of resources and time. It is also worth mentioning that some of these

distributions are themselves based off other distributions, for example Fedora and CentOS are based off

RedHat, also Ubuntu and Linux Mint are based off Debian and so on and so forth.

While an argument could be made towards the use of base distributions like RedHat, we argue

that they are targeted towards individuals or even companies with specialized needs and operations;

this potential target group would have contracted the professional services of technical support from the

seller, and in some cases acquired certifications for their human resources. Therefore, the possibility of

such an advantage between users of these distributions goes against our objective of showing our

solution working “universally” across GNU/Linux platforms and their users. In short, the decision to

use these three popular yet “watered-down” or “simplified” distributions was reached by a combination

of popularity, availability and personal preference, thus any argument for or against our choice is

potentially valid but tangent to the substance of our work.
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2.8 User space vs kernel space

Kernel space refers to the environment that interacts directly with the running kernel, which is

the core of the operating system [12]. The kernel has full access to all memory and other hardware of

the system and so kernel space is an extremely sensitive environment where only the most trusted and

well-tested code runs. Should a problem arise in kernel space, the entire system could be jeopardized.

On the other hand, user space refers to the environment in which most software runs, which operates

under restricted access to resources and functions under a form of sandboxing. Should problems arise

in user space, the system would not necessarily be in jeopardy. Naturally, this segregation between

these environments was created to prevent problems and mitigate risks.

2.9 Ptrace() 

From the manual page of ptrace [13]: “The ptrace() system call provides a means by which one

process (the "tracer") may observe and control the execution of another process (the "tracee"), and

examine and change in the tracee's memory and registers.  It is primarily used to implement breakpoint

debugging and system call tracing.”

Regarding its application in our work, ptrace is a built-in tool in GNU/Linux operating systems

and will let us intercept certain resources in a process for analysis. This will become clearer a bit later

when our solution is explained.

2.10 Buffer overflow and code injection

 A buffer is an area of memory used to store data [14]. Buffer overflow happens when a program

attempts to put more data in a buffer than it can store, or when a program attempts to put data in a

memory area past a buffer. Possible results of a buffer overflow can vary from data corruption, to

crashing of the program, to malicious code execution.  The latter result is the main concern of and

motivation for our work.

As mentioned earlier buffer overflow is a well-known and well-understood software

vulnerability and yet it is still a common occurrence. The problem resides in the actual development of

the software and the fact that a buffer overflow can occur in a variety of ways. In practice, these
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vulnerabilities are not easily detected and when discovered they can be quite difficult to exploit.

Regardless, this is still a significant issue in Information Technology security given the dangerous

effect of malicious exploitation of buffer overflows.

The classic version of buffer overflow exploitation consists of an attacker sending data which is

stored by the receiving program in an undersized stack buffer. The resulting sequence or actions leads

to having information from the call stack overwritten, including the function's return pointer. The value

thus set by the overflowing data becomes a return pointer that leads the execution flow to an arbitrary

memory location, that could be malicious code contained in the attacker's data, essentially handing over

control to the malicious code. 

There are many forms of buffer overflow such as Heap buffer overflow, Off-by-one Error,

Format string attacks and others [15], but for the purposes of our work only those attacks that deal with

the corruption of the stack pointers will be taken into account.

We will now review a scenario where a buffer overflow occurs and is then exploited.  Consider

the following C program:

#include <stdio.h> 

#include <string.h> 

#include <stdlib.h> 

int main(int argc, char **argv) { 

    char buffer[256]; 

    return 0; 

}

In this scenario we have a program written in C that creates a buffer with room for 256

characters. If we introduce more characters that it can hold, it should overflow. We do that by adding

the following piece of code to the above program:

strcpy(buffer,
"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
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AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
"); 

printf("%s\n", buffer);

There are roughly 300 or more As in the string being copied in the buffer. If we compile and

execute the program, we should see an overflow message:

Indeed, the Segmentation fault (core dumped) message is caused by a segmentation violation of

the program which is in turn caused by the overflow.

Code injection [16] is a generic term for certain types of attacks that consist of injecting code

into a running program or process. Generally these attacks exploit vulnerabilities associated to poor

handling of untrusted data. For the purposes of our work, only the types of code injection that deal with

stack pointer manipulation will be considered. 

We can exemplify this concept by injecting code into a process and then visualizing the

behavior, as follows:

#include <stdio.h> 

#include <stdlib.h> 

int main() {   

    int i; 

    for(i = 0;i < 10; ++i) { 

        printf("Testing : %d\n", i); 

        sleep(2); 

    } 

    return 0; 

Illustration 9: Buffer overflow
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} 

Here we have a simple program that will print to the terminal numbers from one to nine while

pausing briefly in-between. When we compile and run it we see the following:

We will now inject code using ptrace. This will be explained in later sections; however the

resulting visualization will be:

This is caused by the injected code, which sends the execution flow to a random memory

address after the first iteration, and tells it to execute the instruction stored there. However since there

are no instructions to be executed at that address, we force the control flow to remain there. In a

malicious scenario, an attacker would tell the control flow to go to an address where malicious code

resides, so that this malicious code will be executed by the process.

Illustration 10: Loop

Illustration 11: Loop with code injection
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2.11 Python and the C programming languages

The Python programming language is considered an easy language for beginners to use [17].

One of the main benefits of using Python is its overall simplicity and especially its powerful functions

and other language constructs. Indeed, the number of lines of code is normally reduced in Python

compared to other programming languages such as Java. A good case in point is the code necessary to

handle network sockets (which is exactly what will be used in our solution).

The C programming language [18] is a widely-known language that has been tried and tested

over decades. The main reason for our use of C in our solution is due to the fact that we use ptrace

which can be easily accessed through this programming language. Also it is worth mentioning that a

substantial amount of software, from the kernel to even the Python interpreter, is coded in C.
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3 Previous work

In this section we address different solutions which offer new perspectives and approaches in

the attempt of solve the problem of buffer overflow.

3.1 Address Space Layout Randomization (ASLR)

ASLR [19] operates under the idea that exploits usually rely on values such as addresses which

are known to contain certain resources or pointers to be static and placed in known locations on the

stack and elsewhere. ASLR introduces randomness into the virtual memory layout of a process in order

to change the binary mapping of stack memory regions and dynamic library linking before the process

executes in order to nullify any attacks that operate under the assumption of static values. 

3.2 Stack canaries

Stack canaries are values that are inserted into specific, known locations in memory, usually

near return addresses, in order to detect buffer overflows due to the fact that when one happens the first

data to be corrupted will usually be the canary. They were originally implemented by Immunix

Inc/WireX in the StackGuard GCC patches. Examples of these canaries are [20], [21], [22]:

1) Null Canaries: The value is set to 0x00000000 due to the fact that usually, string functions terminate

on a null value and thus they would not be able to modify the return address.

2) Terminator Canaries: The value is set to Null, CR, LF and/or 0xFF. This leads to the attacker having

to write a null character before modifying the return address. In essence this accounts for functions that

do not terminate on null values, such as gets().
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3) Random Canaries: Essentially each canary is a 32-bit random value generated by the system.

4) Random XOR Canaries: Performs an XOR operation on the canary value with the control data.

3.3 Bounds checking

Bounds checking [23] operates by keeping track of the address boundaries for objects, buffers

and arrays, and constantly checking the load and store operations that access those resources. All the

loads and stores are validated for whether they access a location inside the resource boundaries. The

boundaries are usually represented by a lower and upper address; should the accessed memory address

be outside of these boundaries, the system may either issue an exception or circumvent the error. 

The application of bounds checking to buffer overflow attacks operates on the premise that a

buffer overflow attack would point to a return address outside of the bounds and thus it would be

detected.  

3.4 Hardware-based protection

SecureBit2 [24] is an approach against buffer overflow attacks that operates on top of Secure

Bit. Specifically, Secure Bit introduces a hardware bit to protect the integrity of addresses, while

SecureBit2 works to protect Secure Bit and therefore successfully detect and prevent all buffer

overflow attacks. This solution requires hardware support. The authors only provide proof-of-concept

evidence of effectiveness and feasibility.

3.5 Dynamic Information Flow Tracking (DIFT)

The idea behind DIFT [25] is to tag untrusted data in order to track it through the system. A

hierarchical model is also in place so that new data that is derived from untrusted data can be

generated. This model has both software and hardware implementations. Current DIFT systems operate

based on bound check recognition in order to detect buffer overflows. However this leads to many false

positives and also some false negatives.
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3.6 Run-time/Executable monitoring

Chaperon [26] and Valgrind are commercial tools that intercept malloc and free calls directly

from a binary executable. A problem with Chaperon is that some overflows are reported incorrectly

because the monitoring of buffers on the stack is very coarse, not to mention the fact that it is closed

source so extensions are difficult. Valgrind on the other hand is open-source. However it shares the

same problem of stack monitoring, not to mention the slowness of execution due to the fact that it runs

on a simulated virtual processor.

3.7 Never execute

The Nx-bit [27] represents a mark on certain areas of memory which makes them non-

executable, so that the processor will refuse to execute code within those areas. This is relevant to our

work because even if this method does not prevent the overwriting of data by a buffer overflow, it will

still prevent the execution of any malicious code that is thus injected on the stack.

3.8 Hardware-software hybrid methods

One research work [28] proposes a hardware and software hybrid solution to protect against

buffer overflows by introducing new assembly functions. One method is called “Hardware Boundary

Check” and it functions by verifying if the target address within a function is equal or larger to the

frame pointer; if this is not the case then some reactive measure is taken. The second method introduces

two new opcodes, “scall” and “sret”, where scall introduces a signature and sret verifies it.

3.9 Array and pointer boundary checking

A recent investigation [29] uses boundary checking to perform protection against buffer 

overflows.  This solution consists of introducing a new instruction to limit the consumption of system 

resources by the process.

 3.10 Counter-measures using kernel properties

Our work picks up where others left off, mainly the work of another graduate from our

university, Benjamin Teissier [30]. He produced a proof-of-concept idea that protects the EIP from
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modification by any type of attack that may tamper with it such as code injection or buffer overflows.

Therefore our work is a direct continuation of his work. He accomplishes the task following these

steps:

1) Upon launching a program an interrupt is called to access the kernel.

2) Modules within kernel space are used to patch the corresponding code.

3) Probes within kernel space are then used to manage operations within this environment.

4) Before a call is detected, the EIP is obtained and stored in a variable in kernel space through an

injected system call. 

5) Once a ret is encountered, the actual EIP on the stack is verified against the value stored in kernel

space using yet another injected system call.

While this is in principle sufficient to protect against such types of attacks in 32-bit

environments, a few issues arise.

1) It takes a substantial time to perform the patching operation upon the launch of a process. Depending

on the size and resources used by the process, this could lead to crashes or timeouts that would leave

the process “hanging” indefinitely.

2) The operation takes place in kernel space, and so the size of the text becomes an issue since the

space reserved to the kernel is limited.

3) His work does not address any running or active process which in turn leaves the system vulnerable.

4) It only addresses 32-bit environments and yet in 2015 most commercial systems are produced with

64-bit environments.
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4 Our Construction

4.1 Challenge

We must define the challenge at a technical level. With our understanding of the functionality of

the stack and the theory behind attacks like buffer overflow, we can establish the following:

1) Since the software has vulnerabilities, we cannot fix mistakes associated with the actual coding.

2) We must intercept at execution time the instruction pointers (EIP/RIP respectively) of a process

whenever a call is issued.

3) We must validate at execution time that whenever a ret is issued the corresponding return address at

the top of the stack has not been modified.

4) We must issue notifications in real-time to the system administrator that a security incident was

detected during execution time. 

Now that we know what we need to do, we proceed to explain how we do it.

4.2 Procedure

In order to begin our construction we need to establish the overall procedure for our work.

Specifically,  our solution will:

1) Use ptrace to intercept the opcodes for call and ret.

2) Store the instruction pointer (EIP/RIP respectively) in a buffer upon a call.
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3) Detect when a ret is issued.

4) Compare the value at the current stack pointer with the value stored in our buffer.

5) Notify the system administrator should a problem be detected.

4.3 Environment

We now define the environment in which we developed our solution, keeping in mind that the

scope of our work will include other GNU/Linux distributions. We define what operating system we

will use, as well as the C compiler and python compiler which will be used to code and compile our

solution. Therefore we define our platform as follows:

Distribution Fedora 19

Memory 7.4 GB

Processor AMD E2-2000 APU with Radeon(tm) HD Graphics x 2

OS type 64-bit

Graphics Gallium 0.4 on AMD PALM

Gnome Version 3.8.4

Disk 25.9 GB

C compiler gcc-4.8.3-7.fc19.x86_64

Python python-2.7.5-15.fc19.x86_64

Table 2: Development platform

4.4 Solution

Having outlined our overall procedure, as well as the platform we will be using, we proceed to

develop our solution using ptrace. 

4.4.1 Usage

 In  order to execute the program in a terminal, we type:

./<launch ctl> <target program> 

where <launch ctl> is our program (that controls the launching of other programs,) and <target
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program> is the process to be analyzed. Specific files and examples are detailed in Section 5.3.

4.4.2 Code

First, it is necessary to tell the kernel that a process will be traced. This is accomplished with the

PTRACE_TRACEME call whose syntax is:

ptrace(PTRACE_TRACEME, pid,...);

In this call pid is the process id to trace. This is usually followed by an execve() system call

which is used to obtain said pid. It is worth mentioning that in our code the pid is a value input by the

user and then sent to a function, so we use:

execl(programname, programname, (char *)0);

where execl() is used to obtain the pid which is stored in the variable programname. Once

PTRACE_TRACEME is issued, the kernel is aware that the process is being traced and ptrace splits

the process into two parts, a parent and a child. This mechanism allows ptrace to hand control back and

forth from the parent to the child in order to detect or perform operations as needed. In this case, the

child will be executing the process and the parent will check for arguments or look into registers. For

our construction the child executes the execve() system call and so hands control over to the parent.

Now we must issue a wait() call to stop the execution of the process during the first instruction, we

accomplish this in our code with:

wait(&wait_status);

The parameter wait_status is just a variable used to manage the wait signal. It is at this point

that we must read the current register values of the process. We accomplish that with

PTRACE_GETREGS to obtain the registers and then PTRACE_PEEKTEXT to obtain the values we

need. Our implementation of this in our code is as follows: To obtain the registers we do

ptrace(PTRACE_GETREGS, child_pid, 0, &regs);

where child_pid is the process being traced. To obtain the instruction pointer for our 64-bit platform we

use

ptrace(PTRACE_PEEKTEXT, child_pid, regs.rip, 0);
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where child_pid is the process being traced and regs.rip is the instruction pointer for 64-bit

architectures. We use temporary variables to store this value.

At this point in our solution we have successfully stopped the execution of the process during

run-time, obtained the value for the instruction pointer, and we must now proceed to evaluate if the

current instruction being executed is a call or a ret. We accomplish this by taking the hexadecimal value

of the instruction and storing it as individual characters in an array. We then evaluate the array by

looking for the first two characters and validate if they comprise a call or ret opcode. This is better

explained with an example so let us visualize a generic call in order to understand how the instruction

is issued:

In this case, the red hexadecimal characters are the memory address, while the characters next

to it (e8 e8 34 00 00) are the hexadecimal characters of the instruction associated to that address, that

is, at the instruction pointer. The hand right side of the image explains what those hexadecimal values

of the instruction mean. In this case the opcode is e8 and we know that it represents a call. The last set

of hexadecimal characters are the address to which the call will jump to. Going back to our solution,

what we are essentially doing is taking the hexadecimal values of the instruction, storing them in

variables and evaluating if the first two characters are the opcodes for either a call or a ret. We

accomplish that with the following code. To look for a call opcode we do:

if (op==0xe8 || op==0x9a || op==0xff || op2 == 0xff00)

The following will determine whether the opcode is a ret code:

if (op==0xc3 || op==0xcb || op==0xc2 || op==0xca)

At this stage, we must evaluate each condition accordingly. When a call is found, we will obtain

the stack pointer and then we store that in a buffer under our control. To obtain the stack pointer for our

64-bit platform we use:

ptrace(PTRACE_PEEKDATA, child_pid, regs.rsp, 0);

where child_pid is the process being traced and regs.rsp is the stack pointer for 64-bit architectures. If

Illustration 12: Call execution

      
       CHAPTER 4. OUR CONSTRUCTION                                                                                                     23



on the other hand a ret is detected, then we must check whether the return address on the stack has not

been modified. To accomplish this we obtain the current return address from the stack and compare it

with the latest value stored in our buffer. If both values are the same, then nothing is wrong and the

program continues. However, if the values are different, we then compare the current value in the stack

to the value next-to-last in our buffer; if they still do not match, we then compare it to the next value in

our buffer, and so on. It is important to note that our buffer is effectively a stack, which stores the latest

value on the top which is then compared with the value of the normal stack when a ret happens.

However since we are dealing with thousands of instructions being executed, a buffer is necessary in

order to store previous values from previous call opcodes. In addition, we also intercept jmp opcodes in

order to simplify the issue of the rew.x + ff prefix, which effectively leaves us intercepting any opcode

preceded by any two values followed by an ff. This will all be detailed in Section 6.1.1, but for now we

note that a consequence of this processing is that it is no longer enough to verify the top of the buffer,

but we need to go deeper in the buffer with our comparison instead. In short, our buffer is a second

stack that we use to store the values we are interested in, which are the call and ret stack pointers. This

is better explained with an example.

Suppose that the execution of a process eventually reaches a call opcode: 

In our current execution flow, we have stopped at a call associated to the address 34fc8011e1

and we can see that the call will jump to the address 34fc81a680. However, we know that at some point

in the execution a ret will be issued to return to the address 34fc8011e6, which is the next address

following the call. Now we will visualize the stack:

As we can see, the stack is empty since the program has just begun its execution. We will now continue

Illustration 13: Call execution

Illustration 14: Stack viewer
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the execution and since we already know that the stack pointer pushed by the call will point to the next

address right after call (34fc8011e6) we will expect that to appear on our stack:

Indeed, the stack now includes the address 34fc8011e6, as expected. Going back to our solution, it is at

this point that we store the return address on our buffer and let the process continue. Now we will carry

on with the execution flow until we find the first ret:

We now check to see if the stack value points to the expected address (34fc8011e6):

The ret value is the correct one and thus the program continues on as usual. Going back to our solution,

Illustration 15: Stack viewer

Illustration 16: Ret execution

Illustration 17: Ret and stack validation
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it is that this point where we check whether the current value on the stack matches the value in our

buffer.

Once the comparison between the current value on the stack and the values in our buffer is

complete, if the current value in the stack is not found then something modified it on the stack and

therefore we assume there has been an attack such as a buffer overflow. If this is the case, we now issue

a real-time message to the system administrator and kill the process. To accomplish this we developed a

server script and a client script in python to handle the real-time messaging.

The server script will be executing at the system administrator's computer actively listening for

messages at a port of his or her choice. In our code we generate a network socket and bind it to port

5555. The code to accomplish this is:

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 

s.bind((host, port)) 

s.listen(1) 

conn, addr = s.accept()

The client script operates in a similar manner by generating a socket, binding it to a port and

sending a message through the network in plain text. The message includes the network address of the

host, the current system time of the host, the hostname, and the instruction that was executed when the

incident occurred (in hexadecimal). While an argument could be made regarding the actual necessity of

the message, it is important to remember what we established at the beginning of this thesis: we seek to

develop a solution that not only automatically detects problems, but also issues notifications that

contains precise information. In this case the fact that we are sending valuable information like time,

hostname, network address and even more so, the actual instruction that caused the problem, can

potentially save the user time and other resources should the need to perform forensic analysis arise.

The code to accomplish all of this is:

 msg = 'Time %s - Hostname %s - Data %s\n' 
(datetime.datetime.now(),socket.gethostname(),dat) 

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 

s.connect((host, port)) 

s.send(msg) 
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s.close()

This is an sample message received by the system administrator, should a problem be detected

on a remote machine: 

 At this point in our solution, we have successfully stopped the execution of the process during

run time, obtained the value for the instruction pointer, and evaluated whether the current instruction

being executed is a call or a ret. If a call was found then the corresponding value is stored in a buffer,

while if a ret was found then we compare the current value in the stack to the values stored in the

buffer; should a discrepancy be detected, our solution automatically issues a message with pertinent

information to the system administrator over the network. It is now necessary to perform this during

every instruction executed in order to fully protect the process. To accomplish this, we use

PTRACE_SINGLESTEP to advance the process to the next instruction. The code for this is:

ptrace(PTRACE_SINGLESTEP, child_pid, 0, 0)

Finally, the child hands control back to the parent and the parent waits for notification from the

kernel with a wait() call, thus completing the cycle. In conclusion, this whole sequence will take place

during every instruction in the process which translates into a successful, working solution that fulfills

the objectives we had set out to accomplish.

4.5 Faster

As stated in the previous section, we have successfully developed a working solution that

accomplishes the objectives we had set out to achieve. However there is still one issue, namely the time

it takes to analyze the process. It all boils down to the buffer and the use of ptrace; while we cannot

optimize ptrace since it is built into the system, it is still the case that the bigger the process we are

analyzing, the bigger the buffer will need to be and therefore the time needed to perform our operations

will increase accordingly. For these reasons we propose a solution to this issue taking into

consideration a couple of things:

1) Checking every single call/ret greatly increases the time requirements, so we would like to come up

Illustration 18: Server message
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with an alternative.

2) If we assume that an attack is taking place, we can argue that a write() system call could potentially

be issued.

3) Therefore if we perform the same operations as before but only whenever a write() system call is

detected, we can successfully detect attacks while greatly decreasing the time overhead.

Thus we also developed a solution based on these considerations. Our reasoning behind the

concept of using write system calls to detect stack buffer overflows is that in practice, while monitoring

the execution of overflowing processes, we detected that system calls were issued at critical points in

the buffer overflow exploit. More specifically we identified that such calls were in place when the last

ret was found (the place of the detection of the overflow). In order to detect opcodes, we generated files

that would serve as storage for the instructions in hexadecimal, which are then read back into an array

and split into individual characters. The first two characters are then used to evaluate whether a call or

ret opcode was detected:

 In order to exemplify this, we will validate our reasoning based on the actual execution of our exploit:

At this stage in the execution we come across a write system call, which is identified in the area below

Illustration 19: System call write

e8 e8 34 00 00 e 8 e 8 3 4 0 0 0 0

call
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the image. In order to better understand how system calls are issued and visualize how this is relevant

to our work, we consider how many system calls were detected during the execution of our code:

We note that the counter represents how many times our code analyzed an instruction, and thus

we can identity a pattern. Specifically, the same system calls are used again and again during the

execution of the process and each time the values may or may not change. This is visualized by the fact

that we can see the same two RIPs being called at different times (0x34fd0e73e0 and 0x34fd0e73e6)

which we can validate against the previous image of the write system call as being the next immediate

address after that write system call. In other words, the same system call happened twice during

execution but with different instructions each time. Also note the error message displayed when the

overflow is detected (0x41414141414...).

Overall, the detection of the last ret after a write system call allows us to verify that since there

is no associated call stack pointer in our buffer, an anomaly is detected. No other calls participate in this

decision (meaning that all the other matching rets are correct). A message is then issued with the

information of the address that the stack buffer overflow pushed incorrect information on the stack

which in turn altered the control flow of the program (“Sends me to=0x41414141414...”). We also have

the detected instruction, which we can verify that it ends in the value of c3 which is the opcode for ret.

Therefore we conclude that for our example detection of write system calls is successful in the

detection of stack buffer overflows. We will detail this further in Section 6.1. 

Illustration 20: System calls
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In practical terms, the mechanisms between the normal and fast versions are effectively the

same; however the change comes via this piece of code which detects only write() system calls:

if((regs.orig_rax == SYS_write))

4.6 32-bit

The 32-bit version operates in exactly the same manner. However the code had to be adapted to

the proper syntax. For example, regs.rip for 64-bit would be regs.eip for 32-bit. An important thing to

note is that while observing our “if” conditions in the code we established that the following two

characters in the array for the ret opcode of c2 should be two zero characters. This is because in

practice we noticed that values with no associated call actually get pushed onto the stack. It is also

important to note that the fast version does not work on 32-bit architectures; we will discuss limitations

in further sections.
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5 Evaluation

5.1 Exploits

In order to show that our solution works we will use a published code by the Mr.Un1k0d3r

RingZer0 Team that exploits a buffer overflow to execute a piece of shell code which in turn obtains

the password files in a Linux system. The following is an example of the exploit after successfully

overflowing the code:

The justification for the use of this particular exploit is that this is a textbook example of a

buffer overflow, which is well documented in both our Preliminaries section as well as in the actual

Illustration 21: Buffer overflow exploit
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source [31]. We can also visualize the code and the hexadecimal values step by step during normal run-

time as well as during the overflow and payload injection. This code was also published in the exploit

database website [31] which is arguably one of the best sources of old and current exploits in the wild.

Thus we argue that our example comes from a well-known source, it is documented in detail down to

hexadecimal values and source code, and has a textbook behavior. We can therefore safely assume that

other stack buffer overflows will follow the same fundamental mechanism. 

We will also manually inject code into the process in order to simulate code injection in real

time in any given process at any given time during execution. We accomplish this by using ptrace

itself:

ptrace(PTRACE_POKEDATA, child_pid,regs.rsp, 333);

where we inject the value 333 into the current position in the stack. With these 2 scenarios we will

demonstrate how our solution successfully performs the required tasks.

5.2 Benchmarking

As previously stated time is an issue, so we will measure how long it takes to perform the

operations. We accomplish this by including the standard clock functions for C in our code:

#include <time.h>

clock_t t; 

t=clock();

...

printf("EXTERNAL: Clicks: %d (%f seconds)\n",t,((float)t)/CLOCKS_PER_SEC);

The time displayed is based on the internal clock of the processor, not the actual time as we 

conventionally measure it.

5.3 Testing

We will now present our solution working on three different distributions of GNU/Linux. It is

important to note that these distributions were installed on virtual machines and therefore the hardware
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specifications are the same for all of them. We will also define the names of the executables as to allow

for a clearer understanding of the screenshots:

Name Description

64full Compiled from 64full.c, it is the code that single-steps through the process at every

instruction executed for 64-bit machines. (113 lines of code)

64fullinj Compiled from 64fullinj.c, it is the code that singlesteps through the process at every

instruction executed for 64-bit machines with code injection. (113 lines of code)

64fast Compiled from 64fast.c, it is the code that single-steps through the process whenever a

write() system call is detected for 64-bit machines. (107 lines of code)

64fastinj Compiled from 64fastinj.c, it is the code that single-steps through the process whenever

a write() system call is detected for 64-bit machines with code injection. (107 lines of

code)

32full Compiled from 32full.c, it is the code that single-steps through the process at every

instruction executed for 32-bit machines. (113 lines of code)

32inj Compiled from 32inj.c, it is the code that single-steps through the process at every

instruction executed for 32-bit machines with code injection. (113 lines of code)

Loop Compiled from loop.c, it is the code for a simple loop used for testing with 64-bit

machines.

Loo Compiled from loo.c, it is the code for a simple loop used for testing with 32-bit

machines.

Vul Compiled from vul.c, it is the code that exploits a buffer overflow obtained from the

internet, used for testing with 64-bit machines.

Vuln Compiled from vuln.c, it is the code that exploits a buffer overflow obtained from the

internet, used for testing with 32-bit machines.

Client.py Python script for the client messaging socket. (14 lines of code)

Server.py Python script for the server messaging socket. (19 lines of code)

Table 3: Files
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5.3.1 OpenSUSE

Distribution OpenSUSE 13.2 (Harlequin) (i568) 32-bit

Memory 2.0 GB

Processor Intel Core i3-3220 CPU @ 3.30 GHz

OS type 32-bit

Graphics Gallium 0.4 on llvmpipe (LLVM 3.5, 128 bits)

Gnome Version 3.14.1

Virtualization Oracle (Virtualbox 4.3.20 r96997)

C compiler Gcc 4.8.3 20140627

Python 2.7.8

Table 4: OpenSUSE 32-bit

For the 32-bit version of OpenSUSE, executing the code of the buffer overflow [31] we present

the screenshots of the successful detection of a buffer overflow with the corresponding message

received by the system administrator:

For the 32-bit version of OpenSUSE, executing the code for the injection (Section 8.3), we

present the screenshots of the successful detection of a code injection with the corresponding message

received by the system administrator:

Illustration 22: Buffer overflow 

Illustration 23: Server message
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Distribution OpenSUSE 13.2 (Harlequin) (x86_64) 64-bit

Memory 2.0 GB

Processor Intel Core i3-3220 CPU @ 3.30 GHz

OS type 64-bit

Graphics Gallium 0.4 on llvmpipe (LLVM 3.5, 128 bits)

Gnome Version 3.14.1

Virtualization Oracle (Virtualbox 4.3.20 r96997)

C compiler Gcc 4.8.3 20140627

Python 2.7.8

Table 5: OpenSUSE 64-bit

For the 64-bit version of OpenSUSE, executing the code of the buffer overflow [31] we present

the screenshots of the successful detection of a buffer overflow with the corresponding message

received by the system administrator:

Illustration 24: Injection

Illustration 25: Server message

Illustration 26: Buffer overflow

Illustration 27: Server message
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For the 64-bit version of OpenSUSE, executing the code for the injection (Section 8.2), we

present the screenshots of the successful detection of a code injection with the corresponding message

received by the system administrator:

5.3.2 Fedora

Distribution Fedora 21

Memory 2.0 GB

Processor Intel Core i3-3220 CPU @ 3.30 GHz

OS type 32-bit

Graphics Gallium 0.4 on llvmpipe (LLVM 3.5, 128 bits)

Gnome Version 3.14.2

Virtualization Oracle (Virtualbox 4.3.20 r96997)

C compiler Gcc 4.9.2 20141101

Python 2.7.8

Table 6: Fedora 32-bit

For the 32-bit version of Fedora, executing the code of the buffer overflow [31] we present the

screenshots of the successful detection of a buffer overflow with the corresponding message received

by the system administrator:

Illustration 28: Injection

Illustration 29: Server message

Illustration 30: Buffer overflow

      
       CHAPTER 5. EVALUATION                                                                                                                    36



For the 32-bit version of Fedora, executing the code for the injection (Section 8.3), we  present

the screenshots of the successful detection of a code injection with the corresponding message received

by the system administrator:

Distribution Fedora 21

Memory 2.0 GB

Processor Intel Core i3-3220 CPU @ 3.30 GHz

OS type 64-bit

Graphics Gallium 0.4 on llvmpipe (LLVM 3.5, 128 bits)

Gnome Version 3.14.1

Virtualization Oracle (Virtualbox 4.3.20 r96997)

C compiler Gcc 4.9.2 20141101

Python 2.7.8

Table 7: Fedora 64-bit

For the 64-bit version of Fedora, executing the code of the buffer overflow [31] we present the

screenshots of the successful detection of a buffer overflow with the corresponding message received

by the system administrator:

Illustration 31: Server message

Illustration 32: Injection

Illustration 33: Server message
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For the 64-bit version of Fedora, executing the code for the injection (Section 8.2), we  present

the screenshots of the successful detection of a code injection with the corresponding message received

by the system administrator:

Illustration 34: Buffer overflow

Illustration 35: Server message

Illustration 36: Injection

Illustration 37: Server message
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5.3.3 Ubuntu

Distribution Ubuntu 14.04 LTS

Memory 2.0 GB

Processor Intel Core i3-3220 CPU @ 3.30 GHz

OS type 32-bit

Graphics Gallium 0.4 on llvmpipe (LLVM 3.5, 128 bits)

Gnome Gnome-shell not installed

Virtualization Oracle (Virtualbox 4.3.20 r96997)

C compiler Gcc 4.8.2

Python 2.7.6

Table 8: Ubuntu 32-bit

For the 32-bit version of Ubuntu, executing the code of the buffer overflow [31] we present the

screenshots of the successful detection of a buffer overflow with the corresponding message received

by the system administrator:

For the 32-bit version of Ubuntu, executing the code for the injection (Section 8.3), we present

the screenshots of the successful detection of a code injection with the corresponding message received

Illustration 38: Buffer overflow

Illustration 39: Server message
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by the system administrator:

Distribution Ubuntu 14.04 LTS

Memory 2.0 GB

Processor Intel Core i3-3220 CPU @ 3.30 GHz

OS type 64-bit

Graphics Gallium 0.4 on llvmpipe (LLVM 3.5, 128 bits)

Gnome Gnome-shell not installed

Virtualization Oracle (Virtualbox 4.3.20 r96997)

C compiler Gcc 4.8.2

Python 2.7.6

Table 9: Ubuntu 64-bit

For the 64-bit version of Ubuntu, executing the code of the buffer overflow [31] we present the

screenshots of the successful detection of a buffer overflow with the corresponding message received

by the system administrator:

Illustration 40: Injection

Illustration 41: Server message

Illustration 42: Buffer overflow
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For the 64-bit version of Ubuntu, executing the code for the injection (Section 8.2), we present

the screenshots of the successful detection of a code injection with the corresponding message received

by the system administrator:

                                                                                                                                 

Illustration 43: Server message

Illustration 44: Injection

Illustration 45: Server message
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5.4 Time

We now present the results of our benchmarking. We do not include the injection version

because we manually inject code and so it does not represent any significant data.

Operating System Executable Time

OpenSUSE 64full with loop 0.23 seconds

64full with vul 0.25 seconds

64full with /usr/bin/cal 2.23 seconds

64fast with loop 0.03 seconds

64fast with vul 0.002 seconds

64fast with /usr/bin/cal 0.01 seconds

32full with loo 0.33 seconds

32full with vuln 0.27 seconds

32full with /usr/bin/cal 2.84 seconds

Fedora 64full with loop 0.28 seconds

64full with vul 0.25 seconds

64full with /usr/bin/cal 1.53 seconds

64fast with loop 0.02 seconds

64fast with vul 0.003 seconds

64fast with /usr/bin/cal 0.008 seconds

32full with loo 0.41 seconds

32full with vuln 0.47 seconds

32full with /usr/bin/cal 1.33 seconds

Ubuntu 64full with loop 0.46 seconds

64full with vul 0.37 seconds

64full with /usr/bin/cal 1.58 seconds

64fast with loop 0.02 seconds

64fast with vul 0.001 seconds

64fast with /usr/bin/cal 0.007 seconds

32full with loo 0.52 seconds

32full with vuln 0.21 seconds

32full with /usr/bin/cal 1.08 seonds

Table 10: Benchmarking

Based on the results shown above we can conclude that the full version for both the 64-bit and

32-bit version require more time to analyze a process, with the time increasing proportionately to the
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size or number of operations executed by the target process. For example it took somewhere between

1.08 and 2.84 seconds to successfully analyze and execute /usr/bin/cal in 32-bit systems, which is a

simple calendar application. Meanwhile the time it takes to analyze the same application on 64-bit

systems varies from distribution to distribution with OpenSUSE taking the most time (2.23 seconds)

and Fedora taking the least (1.53 seconds). However, as previously stated, these were virtual machines

so any conclusion that would attempt to point out key differences between distributions could be

overshadowed by external variables such as the application used to virtualize, as well as the hardware

of the host system and its ability to perform virtualization. On the other hand, the fast version

performed relatively uniformly across all distributions with a decrease in the time needed to perform its

analysis. For example we went from 2.23 seconds with the full version to 0.01 seconds with the fast

version on the OpenSUSE 64-bit distribution. The other two distributions follow the same pattern of

reducing the time needed and therefore successfully supporting our original argument that the fast

version performs the task while reducing the time overhead. 
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6 Conclusions

At the beginning of this thesis we established the following objectives:

1) Develop a countermeasure against stack pointer manipulation in the GNU/Linux operating systems.

2) Automate the detection process at execution time.

3) Notify the system administrator in real time.

4) Minimize the consumption of system resources.

Our solution is a working countermeasure against stack pointer manipulation in GNU/Linux

operating systems as shown in the Section 5. It automatically detects anomalies during run-time and if

a problem is detected then a message is automatically sent to the system administrator over the

network, as explained in Section 4. We also developed a faster version of our solution which minimizes

the consumption of resources (mainly, time). We therefore conclude that our work is successful and

meets our desired requirements of automation and notification.

In comparison with the previous work, specifically Benjamin Teissier's work, we fix the

problem of the size of the text segment and we also work in user space and so we completely nullify

the problems associated to the sensitivity of kernel space and its limited size. We also completely

rework our approach in order to intercept opcodes in real time, during the execution of each and every

instruction, while his work patches the process at launch time instead of intercepting the instructions.

One of the main issues of his work was the architecture (32-bit only).  By contrast we considered 64-bit

as well as 32-bit architectures. Finally, the time issue still remains to an extent. While it could be

argued that our approach also takes up a relatively large amount of time, we also attempted to solve that

issue with our fast version. This limitation will be elaborated on in the next subsection. 
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We have successfully applied our solution to various command-line programs.  However, we

encountered problems while handling programs using graphical user interfaces (see Section 6.1 below).

In general, we conclude that our work is a fully functional applicable result that would be better suited

to server environments where graphical user interfaces are not widely used. Needless to say, these are

the most sensitive and critical assets of a network and companies spend thousands of dollars in

infrastructure and software to protect them. On top of that we completely operate at execution time

which makes our solution applicable even in circumstances that prevent other preventive measures

against stack pointer modifications such as canaries to operate. In particular, closed source applications

as well as legacy applications where we do not have access to the source code are equally protected by

our solution. 

In comparison with other related work as presented in Chapter 3 we note that some of the

previously proposed measures require the addition of extra data or even an entire re-engineering of

certain mechanisms. By contrast our work operates natively under any GNU/Linux distribution without

the need to add data to addresses like canaries, or randomize the entire memory structure of processes

like ASLR, or add support to hardware. In comparison, we operate as just another user space

application without the need to modify the kernel, libraries, hardware or even the actual target process.

In essence, we successfully analyze processes without modifying anything other than whatever normal

system resources we require, just like any other application. 

6.1 Limitations

The limitations that our work presents hover mostly around the time issue. As explained before

there are not many things we can do regarding ptrace. However the bigger the process being executed

is, the bigger the supplementary buffer becomes, and thus the longer it will take to perform the

operations. However, we also developed a faster version of our solution which attempts to work around

the time problem and it does precisely that at least for specific scenarios. The problem with our fast

version arises from the fact that the theory behind it assumes certain things, as well as takes risks with

its mechanics. The issue becomes evident when we take a look at what we are intercepting that is, calls

and rets. With our normal version, every single call and ret will be accounted for and monitored;

however with our fast version, only those calls or rets that happen when a write system call is detected

will be accounted for. This leads to the first potential problem: if a call is issued during execution-time

outside of a write system call, and a write system call takes place followed by a ret that will attempt to

go back to said call, the fast version of our solution will issue a false positive. Since the call was not
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accounted for due to it taking place outside of the write system call, by the time the ret is issued and

evaluated, the buffer will not have the proper value stored and the fast version of our solution will

never match the current value in the stack to any value in the buffer even though it is a legit return.

Another problem possibly related to the time issue is when dealing with graphical user

interfaces. The expected behavior is that even if it takes a long time to evaluate each instruction,

eventually the graphical user interface will be launched for a given process. In practice there are

instances when this interface does not launch. This is a problem that requires a high level of expertise

to analyze and figure out, down to the assembly code. As an example of an instance when this occurs

we consider Gnome-based graphical user interfaces and more precisely gnome-calculator, normally

located at /usr/bin/gnome-calculator. Even if there is an instance of gnome-calculator running on the

system, and therefore we assume that certain libraries have been loaded, our solution still “hangs”

forever due to, we assume, a timeout issue. This is supported by the fact that when we run the code

without checking for opcodes at all, the graphical user interfaces launch without a problem. We can

visualize it with the following execution of gnome-calculator:

The problem disappears once we eliminate graphical user interfaces and run command-line

executables. A possible lead towards a solution to this issue might be in the way threads are generated

within the target process. We were however not able to confirm that the multi-threaded nature of GUI

programs is the cause of the above issue.  Indeed, we ran our solution on simple (that is, non-GUI)

programs that use fork(), clone(), and pthread_create().  In all cases the programs ran successfully

under our monitoring system. A solution to the GUI problem involves other, more complex topics such

as operating system scheduling algorithms that fall outside the scope of our work. This being said, we

believe that our solution is still fully applicable to production servers, which normally do not run

graphical user interfaces at all.

Illustration 46: No opcodes
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The last issue is the fact that the fast version does not work on 32-bit operating systems. Once

again, this problem requires a high level of expertise to solve, down to assembly code. 

In conclusion it is necessary to state that the fast version is nothing more than an educated

attempt at fixing the time issue compared with our fully-working, normal version. Thus, while we are

aware that countless arguments could be made against this fast version, we believe that our work on the

matter represents a first step towards a fix, so we present the fast version as an added bonus to our

fully-working, normal version. 

6.1.1 Buffer optimization

There is a probable way to maximize the efficiency of our buffer. As previously mentioned, in

the 32-bit version there exists the problem of the opcode c2 for ret due to values getting pushed on the

stack. In this case, we can verify that when the ret is issued, the address to which it returns is not

preceded by a call, which is what we would expect and actively intercept. This is why we force our “if”

condition for ret to only intercept c2 if it is followed by two zero values:

Illustration 47: Ret and stack viewer
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This example above is under 32-bit Ubuntu and we can see that the stack contains the ASCII

symbols “UWVS” and it will return to the address b7e2d990 where based on our assumptions we are

expecting a call. However after execution of the ret, we can verify that there is no associated call at that

location:

If we dig a little further we find out that certain eax registers are pushing values into the stack;

this is likely to be the resulting effect of the way libraries (libc.so) were developed for 32-bit

architectures. A similar issue happens with our 64-bit versions. However in this case, the issue is with

the opcode for call. Indeed, one of the opcodes for call is rex.w + ff; however the rex.w prefix only

happens in long-mode which in turn occurs during a series of possible conditions [32]. Since our code

has time issues as it is, including a bigger list of conditions to look for during execution-time would not

be optimal. Our solution to this issue was to listen to all instructions that met the criteria of ff values

preceded by any two values. This in turn simplifies the problem and allows us to intercept both jmp and

call instructions:

It is theoretically possible to optimize the buffer for both versions if simpler solutions to the

opcode c2 problem for the 32-bit version and to the rex.w prefix for 64-bit version are developed. 

6.2 Future work

Several issues remain with our solution, as outlined in the previous section. Solving these issues

is one of our continuing interests on the matter.

Illustration 49: Call

Illustration 50: Jmp

Illustration 48: Return
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Due to the nature of our solution, it is possible to port it over to other operating systems, mainly,

BSD-based operating systems (such as NetBSD and OpenBSD), but potentially all Unix-based

operating systems. The mechanisms we utilize for our solution are similar between all such operating

systems, so the porting process is simple. However the syntax does change and some other minor

details need to be worked out as well. Another operating system that could be used to port is Mac OS

X. Since OS X is roughly based off BSD, we can still find ptrace in there. However the functionality of

ptrace under OS X is greatly reduced; nonetheless we believe that this could potentially be worked

around. Another major, alternate operating system is Solaris. Since it is based of Unix, we can also find

ptrace built into it. In short, wherever we can find ptrace, we can port our solution, assuming of course

that the core functionality is still available.
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8 Appendices

8.1 64fast.c

To enable injection, notice the commented line of of code that mentions injection

//Erick Leon, 2015 

//Based off the code by Pradeep Padala 

//    http://www.linuxjournal.com/article/6100?page=0,2 

#include <sys/ptrace.h> 

#include <sys/types.h> 

#include <sys/wait.h> 

#include <unistd.h> 

#include <sys/user.h> 

#include <sys/reg.h> 

#include <stdio.h> 

#include <stdlib.h> 

#include <stdarg.h> 

#include <stdint.h> 

#include <sys/syscall.h> 

#include <signal.h> 

#include <unistd.h> 

#include <time.h> 

int main(int argc, char** argv){//main function 

clock_t t;//benchmarking 

t=clock();//benchmarking 

int calll=0;//updates destiny after call 

int i;//for 

int counter=0; 

FILE *ptr_file; //file storing hex values 

uint64_t instr,check,dest;//store the hex values of instructions and eip/rip 

uint64_t bfr[900000]; 

pid_t child; //child process 

const int long_size = sizeof(long); 

  if(argc < 2){ 

  fprintf(stderr, "Invalid\n"); 
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  return -1; 

  }//if argc 

child = fork();//fork the child from the parent 

  if(child == 0){ //no child process exist  

  ptrace(PTRACE_TRACEME, 0, NULL, NULL); //trace the process 

  execl(argv[1], argv[1] , (char*)0); //run the program 

  }else{ 

  int status; //variables to control status 

    union u{ 

    long val; 

    char chars[long_size]; 

    }data; 

  struct user_regs_struct regs; //regs for EIP or RIP 

  int start = 0; 

    while(1){ 

    wait(&status);//stores the status of wait 

      if(WIFEXITED(status))//if done 

      break; 

    ptrace(PTRACE_GETREGS,child, NULL, &regs);//get regs 

      if(start == 1){ 

      instr = ptrace(PTRACE_PEEKTEXT,child, regs.rip,NULL);//obtain text 

    if (calll == 1){//if a call has happened, update destiny 

    dest = ptrace(PTRACE_PEEKDATA, child, regs.rsp, 0);//next instruction after
call 

    bfr[counter]=dest;//store the destination in a buffer 

    counter++;//increase to the next position 

    } 

    calll=0;//reset the call counter, i.e. call has NOT happened 

/*Create a file to store the hex values of instr*/ 

  ptr_file =fopen("o", "w"); //open file to write 

  fprintf(ptr_file,"%lx\n", instr);//write hex values to file 

  fclose(ptr_file);//close file 

  char ch[16];//stores single characters of hex values 

  int n = 0;//counter 

  ptr_file =fopen ("o","r");//open file to read 

    while (!feof(ptr_file)){//while no ending of file 

    ch[n] = fgetc(ptr_file);//get individual characters 

    n++;//increase counter 

    }//while 

  fclose(ptr_file);//close file 

/*End of file creation*/ 

    if ((ch[n-4]=='e'&&ch[n-3]=='8')||(ch[n-4]=='9'&&ch[n-3]=='a')||

        (ch[n-4]=='f'&&ch[n-3]=='f')||(ch[n-6]=='f'&&ch[n-5]=='f')){

                                                              //if opcodes for call

    calll=1;//a call has happened 

    //printf("Call at RIP: 0x%lx instruction: 0x%lx\n",regs.rip,instr); 

    }//if opcodes for call    

    if((ch[n-4]=='c'&&ch[n-3]=='3')||(ch[n-4]=='c'&&ch[n-3]=='b')||

       (ch[n-4]=='c'&&ch[n-3]=='2')||(ch[n-4]=='c'&&ch[n-3]=='a')){

                                                               //if opcodes for ret

    counter--;//decrease position on array 

    //ptrace(PTRACE_POKEDATA, child,regs.rsp, 333); //Code injection 

    check = ptrace(PTRACE_PEEKDATA, child, regs.rsp, 0); //val in current rsp stack
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    //printf("Ret Going to: 0x%lx  Supposed to go to: 0x%lx instruction: 0x
%lx\n",check, dest, instr); 

    int ii = 0;//if ret has happened 

      for(i=counter;i>=0;i--){//check all stored dest 

        if(check == bfr[i]){//if next position from call is different from where

                            // the rsp stack wants to send me 

        ii=1;//if a ret was fine to go 

        break; 

        }//if check 

      }//for i=counter 

      if(ii!=1){//if ret was NOT fine to go 

      printf("Error!  Sends  me  to=0x%lx  Current  RIP=0x%lx  instr:  0x
%lx\n",check,regs.rip,instr);//Shows the problem 

      kill(child,SIGKILL); //kill the process 

      system("./client.py");//Notify the sysadmin 

      t=clock()-t;//benchmarking 

      printf("INTERNAL:  Clicks:  %d  (%f  seconds)\n",t,
((float)t)/CLOCKS_PER_SEC);//benchmarking 

      exit(0);//end 

      }//if ii  

    }//if opcodes for ret 

  //wait(&status);//Wait for next stop 

      }//if start = 1 

   if((regs.orig_rax == SYS_write)){//every new instance 

   start = 1;//initialize 

   ptrace(PTRACE_SINGLESTEP, child,NULL, NULL);//singlestep the child 

   }else ptrace(PTRACE_SYSCALL, child, NULL, NULL);//begin listening to syscalls 

 }//while 1 

}//if-else 

t=clock()-t;//benchmarking 

printf("EXTERNAL: Clicks: %d (%f seconds)\n",

        t,((float)t)/CLOCKS_PER_SEC);//benchmarking 

return 0; 

}//main

8.2 64full.c

To enable injection, notice the commented line of of code that mentions injection.

//Erick Leon, 2015 

//Based off the code by Eli Bendersky 

//    http://eli.thegreenplace.net/2011/01/23/how-debuggers-work-part-1.html 

#include <sys/types.h> 

#include <sys/wait.h> 

#include <sys/reg.h> 

#include <sys/user.h> 

#include <unistd.h> 

#include <errno.h> 

#include <stdio.h> 

#include <stdarg.h> 

#include <stdlib.h> 

#include <signal.h> 
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#include <syscall.h> 

#include <stdint.h> 

#include <sys/ptrace.h> 

#include <time.h> 

void name(const char* programname){ 

  if(ptrace(PTRACE_TRACEME, 0, 0, 0) < 0){//Trace the program 

  perror("ptrace"); 

  return; 

  } 

execl(programname, programname, (char *)0);//Name of the program to trace 

} 

void analyze(pid_t child_pid){ 

clock_t t;//benchmarking 

t=clock();//benchmarking 

int calll=0;//updates destiny after call 

int i;//for 

int counter=0; //counter to manipulate our buffer 

FILE *ptr_file; //file storing hex values 

uint64_t instr,check,dest,op,op2;//store the hex values of instructions and eip/rip
and opcodes 

uint64_t bfr[900000]; //our buffer 

int wait_status; 

wait(&wait_status);//wait for child process to stop at first instruction 

  while(WIFSTOPPED(wait_status)){ 

  struct user_regs_struct regs;//eip or rip 

  ptrace(PTRACE_GETREGS, child_pid, 0, &regs);//obtain regs eip or rip 

  instr = ptrace(PTRACE_PEEKTEXT, child_pid, regs.rip, 0);//instr. at current rip 

    if (calll == 1){//if a call has happened, update destiny 

    dest = ptrace(PTRACE_PEEKDATA, child_pid, regs.rsp, 0);//next instr. after call

    bfr[counter]=dest;//store the destination in a buffer 

    counter++;//increase to the next position 

    }//end of if call has happened 

  calll=0;//reset the call counter, i.e. call has NOT happened 

  op = instr & 0xff; //opcode for first byte 

  op2 = instr & 0xff00; //opcode for second byte, rex.w prefix 

    if (op==0xe8 || op==0x9a || op==0xff || op2 == 0xff00){//if opcodes for call 

    calll=1;//a call has happened 

    //printf("Call at RIP: 0x%lx instruction: 0x%lx\n",regs.rip, instr); 

    }//if opcodes for call 

    if (op==0xc3 || op==0xcb || op==0xc2 || op==0xca){//if opcodes for ret 

    counter--;//decrease position on array 

    //ptrace(PTRACE_POKEDATA, child_pid,regs.rsp, 333); //Code injection 

    check = ptrace(PTRACE_PEEKDATA, child_pid, regs.rsp, 0);//val in curr rsp stack

    //printf("Ret Going to: 0x%lx  Supposed to go to: 0x%lx instruction: 0x
%lx\n",check, dest, instr); 

    int ii = 0;//if ret has happened 

      for(i=counter;i>=0;i--){//check all stored dest 

        if(check == bfr[i]){//if next position from call is different from where 

                            // the rsp stack wants to send me 

        ii=1;//if a ret was fine to go 

        break; 
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        }//if check 

      }//for i=counter 

      if(ii!=1){//if ret was NOT fine to go 

      printf("Error! Sends me to=0x%lx Current RIP=0x%lx Instr=0x
%lx\n",check,regs.rip,instr);//Shows the problem 

      kill(child_pid,SIGKILL); //kill the process 

      //Create a file to store the hex values of instr 

      ptr_file =fopen("o", "w"); //open file to write 

      fprintf(ptr_file,"%lx\n", instr);//write hex values to file 

      fclose(ptr_file);//close file 

      //End of file creation 

      system("./client.py");//Notify the sysadmin 

      t=clock()-t;//benchmarking 

      printf("INTERNAL: Clicks: %d (%f seconds)\n",t,
((float)t)/CLOCKS_PER_SEC);//benchmarking 

      exit(0);//end 

      }//if ii  

    }//if opcodes for ret 

    if(ptrace(PTRACE_SINGLESTEP, child_pid, 0, 0) < 0){//Single step it 

    perror("ptrace"); 

    return; 

    }//if singlestep 

  wait(&wait_status);//Wait for next stop 

  }//while general 

}//function 

int main(int argc, char** argv){//main 

clock_t t;//benchmarking 

t=clock();//benchmarking 

pid_t child_pid;//child process 

  if(argc < 2){ 

  fprintf(stderr, "Invalid\n"); 

  return -1; 

  }//if argc 

child_pid = fork(); 

  if(child_pid == 0) 

  name(argv[1]); 

  else if(child_pid > 0) 

  analyze(child_pid); 

  else{ 

  perror("fork"); 

  return -1; 

  }//if-else 

t=clock()-t;//benchmarking 

printf("EXTERNAL: Clicks: %d (%f seconds)\n",t,
((float)t)/CLOCKS_PER_SEC);//benchmarking 

return 0; 

}//main
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8.3 32full.c

To enable injection, notice the commented line of of code that mentions injection.

//Erick Leon, 2015 

//Based off the code by Eli Bendersky 

//    http://eli.thegreenplace.net/2011/01/23/how-debuggers-work-part-1.html 

#include <sys/types.h> 

#include <sys/wait.h> 

#include <sys/reg.h> 

#include <sys/user.h> 

#include <unistd.h> 

#include <errno.h> 

#include <stdio.h> 

#include <stdarg.h> 

#include <stdlib.h> 

#include <signal.h> 

#include <syscall.h> 

#include <stdint.h> 

#include <sys/ptrace.h> 

#include <time.h> 

void name(const char* programname){ 

  if(ptrace(PTRACE_TRACEME, 0, 0, 0) < 0){//Trace the program 

  perror("ptrace"); 

  return; 

  } 

execl(programname, programname, (char *)0);//Name of the program to trace 

} 

void analyze(pid_t child_pid){ 

clock_t t;//benchmarking 

t=clock();//benchmarking 

int calll=0;//updates destiny after call 

int i;//for 

int counter=0; 

FILE *ptr_file; //file storing hex values 

long instr,check,dest,op,op2;//store the hex values of instructions and eip/eip 

long bfr[900000]; 

int wait_status; 

wait(&wait_status);//wait for child process to stop at first instruction 

  while(WIFSTOPPED(wait_status)){ 

  struct user_regs_struct regs;//eip or eip 

  ptrace(PTRACE_GETREGS, child_pid, 0, &regs);//obtain regs eip or eip 

  instr = ptrace(PTRACE_PEEKTEXT, child_pid, regs.eip, 0);//instr. at current eip 

    if (calll == 1){//if a call has happened, update destiny 

    dest = ptrace(PTRACE_PEEKDATA, child_pid, regs.esp, 0);//next instr. after call

    bfr[counter]=dest;//store the destination in a buffer 

    counter++;//increase to the next position 

    } 

  calll=0;//reset the call counter, i.e. call has NOT happened 
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  op = instr & 0xff; //opcode for first byte 

  op2 = instr & 0xff00; //opcode for second byte, c2 problem 

    if (op==0xe8 || op==0x9a || op==0xff || op2==0xff00){//if opcodes for call 

    calll=1;//a call has happened 

    //printf("Call at eip: 0x%lx instr; 0x%lx\n",regs.eip, instr); 

    }//if opcodes for call   

    if (op==0xc3 || op==0xcb || op==0xca || op2 ==0xc2){//if opcodes for ret 

    counter--;//decrease position on array 

    //ptrace(PTRACE_POKEDATA, child_pid,regs.esp, 333); //Code injection 

    check = ptrace(PTRACE_PEEKDATA, child_pid, regs.esp, 0);//val in curr esp stack

    //printf("Ret Going to: 0x%lx  Supposed to go to: 0x%lx\n",check, dest); 

    int ii = 0;//if ret has happened 

      for(i=counter;i>=0;i--){//check all stored dest 

        if(check == bfr[i]){//if next position from call is different from where

                            // the esp stack wants to send me 

        ii=1;//if a ret was fine to go 

        break; 

        }//if check 

      }//for i=counter 

      if(ii!=1){//if ret was NOT fine to go 

      printf("Error! Sends me to=0x%lx Current eip=0x%lx  instr: 0x
%lx\n",check,regs.eip,instr);//Shows the problem 

      kill(child_pid,SIGKILL); //kill the process 

      /*Create a file to store the hex values of instr*/ 

      ptr_file =fopen("o", "w"); //open file to write 

      fprintf(ptr_file,"%lx\n", instr);//write hex values to file 

      fclose(ptr_file);//close file 

      /*End of file creation*/ 

      system("./client.py");//Notify the sysadmin 

      t=clock()-t;//benchmarking 

      printf("INTERNAL: Clicks: %d (%f seconds)\n",t,
((float)t)/CLOCKS_PER_SEC);//benchmarking 

      exit(0);//end 

      }//if ii  

    }//if opcodes for ret 

    if(ptrace(PTRACE_SINGLESTEP, child_pid, 0, 0) < 0){//Single step it 

    perror("ptrace"); 

    return; 

    }//if singlestep 

  wait(&wait_status);//Wait for next stop 

  }//while general 

}//function 

int main(int argc, char** argv){//main 

clock_t t;//benchmarking 

t=clock();//benchmarking 

pid_t child_pid;//child process 

  if(argc < 2){ 

  fprintf(stderr, "Invalid\n"); 

  return -1; 

  }//if argc 

child_pid = fork(); 

  if(child_pid == 0) 
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  name(argv[1]); 

  else if(child_pid > 0) 

  analyze(child_pid); 

  else{ 

  perror("fork"); 

  return -1; 

  }//if-else 

t=clock()-t;//benchmarking 

printf("EXTERNAL: Clicks: %d (%f seconds)\n",t,
((float)t)/CLOCKS_PER_SEC);//benchmarking 

return 0; 

}//main

8.4 loop.c

#include <stdio.h> 

#include <stdlib.h> 

int main() 

{   int i; 

    for(i = 0;i < 10; ++i) { 

        printf("Testing : %d\n", i); 

        sleep(2); 

    } 

    return 0; 

} 

8.5 vul.c

#include <stdio.h> 

#include <string.h> 

#include <stdlib.h> 

int main(int argc, char **argv) { 

char buffer[256]; 

printf("%p\n", buffer); 

strcpy(buffer, 
"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAA"); 

printf("%s\n", buffer); 

return 0; 

}

8.6 client.py

#!/usr/bin/env python 

import socket 

import datetime 

host = '127.0.0.1' 

port = 5555 
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f=open("o","r+") 

str=f.read(16); 

dat=str 

f.close() 

msg = 'Time %s - Hostname %s - Data %s\n'%
(datetime.datetime.now(),socket.gethostname(),dat) 

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 

s.connect((host, port)) 

s.send(msg) 

s.close() 

8.7 server.py

#!/usr/bin/env python 

import socket 

host = '127.0.0.1' 

port = 5555 

bfr = 2000  

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 

s.bind((host, port)) 

s.listen(1) 

conn, addr = s.accept() 

print 'Host:', addr 

while 1: 

  data = conn.recv(bfr) 

  if not data: 

    break 

  elif data == 'kill': 

    conn.close() 

    sys.exit() 

  else: 

    print "Message:", data
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