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Abstract 

With the increasing complexity of software in recent years model-based testing 
has attracted more attention in industry and research, and the task of functional 
test of the reactive software product lines is increasingly challenging and time 
consuming. In model-based testing test cases are automatically generated to verify 
the correctness of the implementation of a system according to the model that 
describes the expected behavior of that system. In this research, a model-based 
test method is presented for the functional test of the reactive software product 
lines. In the proposed method, the system specification model is described by an 
extension of the finite state machine model.  In other words, a formal method is 
presented to apply variability in finite state machines. Then, one of the efficient 
test methods on finite state machines is selected and refined to be used for 
production line testing. The conducted tests show that the obtained method 
reduces the time required to generate the requisite test cases compared to the 
original method. 
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Chapter 1 

Introduction 

Various needs of customers have led to mass customization in many industries. 
Providing customized products at a reasonable cost drives artisans to product line 
engineering. Product line engineering reduces development costs and time, also 
increasing product quality compared to single system development.  Due to the 
wide variety of products, product quality testing is a complex and costly matter. 
Also, due to the reduction of the development cost of each product, the share of 
the test cost in relation to the total cost in product line engineering has increased 
and made the test issue more critical. 

The purpose of a software product line is to produce efficient and disciplined 
products. Software product line engineering provides the possibility of producing 
products with a lower cost in a shorter time and with higher quality. A basic 
concept in software product line engineering is reuse, which has led to its division 
into two processes: domain engineering and application engineering. In product 
line engineering as defined by ISO26550:2015, Domain Engineering is 
complemented by Application Engineering which takes care of the life cycle of 
the individual products derived from the product line [1]. Reusable components 
are generated in domain engineering and used in application engineering to 
produce a customized product [2]. The description of a product in a product line 
consists of a constant and a variable part. The constant part describes the common 
aspects between all products and the variable part describes the different aspects 
between different products, called variability [3]. The products of a software 
product line are distinguished from each other by their features. In fact, each 
feature adds functionality to the product. A distinct combination of features 
defines each product [4].  

Any business that spends a significant portion of its budget on software 
development must implement effective testing strategies. In an organization using 
software product lines (SPL) testing strategies are even more crucial since the 
share of testing costs increases as the development costs for each product 
decreases. Testing of a software product line is a complex and costly task since 
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the variety of products derived from the product platform is huge. In addition to 
the complexity of stand-alone product testing, product line testing also includes 
the dimension of what should be tested in the platform and what should be tested 
in separate products [5]. Testing consumes up to 50% of the total effort in single 
system engineering. This percentage increases in software product line 
engineering, because the effort of constructing applications decreases due to 
comprehensive reuse [6]. 

Systematic testing is one of the most important and widely used techniques to 
check the quality of software. The current tendency is that the effort spent on 
testing is still increasing due to the continuing quest for better software quality, 
and the ever-growing size and complexity of systems. The situation is aggravated 
by the fact that the complexity of testing tends to grow faster than the complexity 
of the systems being tested, in the worst case even exponentially. One of the new 
approaches to meet the challenges imposed on software testing is model based 
testing. In model based testing a model of the desired behavior of the 
implementation under test (IUT) is the starting point for testing. The main virtue 
of model-based testing is that it allows test automation that goes well beyond the 
mere automatic execution of manually crafted test cases. It allows for the 
algorithmic generation of large amounts of test cases, including test oracles 
starting from the model of required behavior [7]. Several methods for testing 
software product line model have been developed. An overview is given in 
Section 3.  

Reactive systems are software and hardware systems with a (usually) non-
terminating behavior that interact through visible events such as Web servers, 
communication protocols, operating systems, smart cards, processors, etc. Model-
based testing is one of the common test methods for reactive software [8]. In this 
thesis we develop a model-based test method for product line of reactive systems, 
which is further explained in the next section. 

1.1 Motivation and Research Problem 

Several methods in the field of model-based testing of software product line have 
been developed, but the models that are considered to describe the characteristics 
of the product line are not based on formal notation. Indeed, most of the test 
methods use Unified Modeling Language (UML) models. We attempt to remedy 
this by using formal specification models. Software product lines are widely used 
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in industrial fields, and formal models, including finite state machines, are used to 
model systems in various fields, including industry. We also use finite state 
machines in our effort to model product lines of reactive systems, since this kind 
of automata are one of the suitable models for reactive systems. It should be noted 
that one of the other methods for modeling reactive systems is the use of Input 
Output Labeled Transition System (IOLTS) [8]. The relation of input-output 
conformance, called input output conformance testing (IOCO testing) is a method 
of model-based testing for IOLTS. In this method, an infinite number of different 
test cases are generated from the system description model [7]. Therefore, it is not 
possible to apply all test cases, and it is further impossible to estimate the quantity 
of particular test cases. The number and length of test cases are used instead in 
evaluating the effectiveness of the method. According to what was mentioned 
before and also the finiteness of the test theory [8], we argue that finite state 
machines are a more suitable choice for our model. The field of work in our 
research area is therefore limited to systems that can be modeled with a finite state 
machine. To use a finite state machine, we further need to provide a way to 
import variability into the machine. 

We know that a fundamental concept in the software product line is reuse. In 
our work we want to use this concept in the product line test. For this purpose, we 
chose the W test method [9], which is one of the efficient test methods for finite 
state machines, and by applying necessary changes, we obtain a new variant 
capable of testing software product lines. In the continuation of this thesis, we 
will see how we reuse the generated test cases to test different products of the 
software product line. Our method aims to reduce the cost of the testing process. 
In order to evaluate this, we compare our method with the process of applying the 
W test method to each product of the product line. The details of the experiments 
and their results are given in Chapter 5. 

1.2 Summary of research achievements 

Among the achievements of this research, the following can be mentioned: 
• Importing variability in a finite state machine: The starting point of model-based 

testing is to have a model of the desired and expected behavior of the system. 
Since in this research the finite state machine is chosen for modeling, it is 
necessary to expand it in such a way that it also shows the variability of the 
product line. 
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• Presenting an efficient model-based test method, along with applying the concept 
of reuse: In this research, we change the W test method in such a way that it 
produces reusable test cases for testing the product line of reactive software. 

By performing the tests and observing the results, we will see that the production 
time of the test cases required for testing all the products of the software product line has 
been reduced by using our method compared to the W method. The cost of product line 
testing includes the cost of producing test items and also the time necessary to apply them 
to products. By reducing the first component we reduce the overall cost of the testing 
process. 

1.3 Thesis structure 

We organized this thesis in 6 chapters. Chapter 2 is dedicated to the background 
of the research, which includes model-based testing, finite state machine and its 
testing methods, and the software product line. In Chapter 3, we summarize the 
previous work related to our research topic. Specifically, we first introduce 
several software product line modeling methods, then discuss software product 
line test methods, and finally, we outline the test-based model for reactive 
systems. In Chapter 4 we describe our method. Chapter 5 is devoted to the 
evaluation of the proposed test method. Finally, we summarize our work as well 
as state some future research directions opened by our effort. 
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Chapter 2 

Preliminaries 

The concepts and methods used in this research are briefly described in this 
chapter. The first part describes model-based testing. In the second part we first 
discuss the definitions and basic concepts related to finite state machines, and 
then we explain the W test method, which is an efficient method for testing finite 
state machines [8], [9], [10], [11]. In the last part we cover the software product 
line, variability, and the feature model. It should be noted that the examples 
presented in this chapter are not adopted from any source and therefore are not 
accompanied by any citation. 

2.1 Model-based testing  

Model-based testing is one of the most efficient techniques to deal with software 
testing challenges. In model-based testing, the implementation under test (IUT) is 
tested for conformance to a model that specifies the expected behavior of that 
implementation. Therefore, the start point of this process is having a model of the 
expected behavior of the implementation under test. The main advantage of 
model-based testing is test automation. Model-based testing allows many test 
cases to be generated algorithmically and automatically from a given model. If the 
model is valid and accurately describes what the system under test should do, then 
all the generated tests will also be valid. 

From the industrial point of view, model-based testing is a promising 
technique for improving the quality and efficiency of testing and reducing its cost. 
Test automation focuses only on the automated execution of test cases. The 
purpose of model-based testing however is to automatically generate high-quality 
test cases from the models, so it completes the automatic execution of the tests. 
Model-based testing is an extension of formal methods and verification 
techniques. Model-based testing and formal verification pursue complementary 
goals. With formal verification techniques, we can prove that the model of a 
system satisfies a number of desired characteristics [7]. The model-based test is 
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based on a valid model of the system; therefore, it shows that the actual and 
physical implementation of the system behaves in conformance with this model. It 
should be noted however that due to the inherent limitations of the tests, including 
the limited number of tests that can be performed and the lack of completeness of 
the tests, model-based testing can only show the presence of faults, not their 
absence. Model-based testing is generally not complete. However, model-based 
testing of finite automata which we did in this thesis is complete. 

There are different types of model-based tests, depending on the models 
which are used, qualitative aspects which are tested, the desired level of formality, 
and the level of accessibility and observability of the system. In this thesis we 
consider model-based testing to be formal, specification-based, and black-box. 
The basis and starting point of the tests is the specification that determines what 
the system under test should or should not do. The specification is given in the 
form of a behavioral model, which is assumed to be correct and valid. In addition, 
the test is a black-box, that is the implementation under test is considered a black-
box without internal details and can only be accessed and viewed through its 
external interface. The test is formal because the specification that determines the 
desired and expected behavior of the system is defined by a formal language 
whose syntax and semantics are defined in details. Of course, in addition to the 
formal specification the method includes the formal definition of the meaning of 
conformance for the system under test as well as an algorithm to generate the 
tests.  

A formal specification-based testing framework is based on several concepts. 
The first one is the implementation under test. An implementation can be an 
actual physical object such as a hardware component, a computer program with 
all its libraries that is running on a processor, an embedded system consisting of 
software embedded in a physical device, or a process control system with its 
sensors and actuators. Since the test is a black-box, the implementation is also 
treated as a black-box. This means that the implementation interacts with its 
environment, but there is no information about its internal structure. The only way 
a tester can control or observe an implementation is through its interface. The 
correctness of an IUT is defined as its conformance to a specification. To check 
the conformance of the IUT with the desired specification we need to formally 
define the concept of conformance [7]. Input-output conformance (IOCO) testing 
[7] is worth mentioning as a practical and important model-based testing 
framework. In this test, the specification is modeled using an input/output labeled 
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transition system. 

2.2 Finite state machine 

Finite state machines (FSM) are used to model systems in various fields, 
including sequential circuits and communication protocols in networks. The need 
for reliability in these systems has led to extensive research in the field of testing 
finite state machines. These machines are also widely used in modeling reactive 
systems. The formal definition of finite state machine is as follows. 

Definition 2.1 [8]: A finite state machine is the 6-tuple (I, O, S, δ, λ), where I, O, 
and S are finite and non-empty sets of input symbols, output symbols, and states, 
respectively. δ is the state transition function, δ: S × I → S and λ is the output 
function, λ: S × I → O. 

Each FSM can be represented by a directed graph called transition diagram 
whose nodes and edges correspond to the states and transitions of the machine, 
respectively. Each edge is labeled with the input and output of the corresponding 
transition. Finite state machine test problems are classified into two types. In the 
first type the transition diagram of the machine is known, but the current state of 
the machine is not known. By applying an input sequence and examining its 
input/output behavior, some information about the current state can be obtained. 
The test sequences used to solve this problem are called distinguishing sequences. 
The other type of test is the conformity test, in which a finite state machine with a 
known transition diagram is given as the specification. The implementation is a 
black-box with only its input and output behavior visible. In this type of test, the 
conformance of the implementation machine with the given specification machine 
is checked. 

Although the FSM is a simple model, the conformance test for this machine 
is significant and useful in practice. Indeed, FSMs are used to describe a variety 
of systems including digital circuits, embedded control systems, and protocols. In 
addition, many formal notations for describing communication protocols 
including state diagrams in unified modeling language (UML) and specification 
and description language (SDL) [12] are very similar to a finite state machine.  

In what follows a number of definitions related to the finite state machine are 
presented, and then two conformity test methods are given for this machine. 
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2.2.1 Basic definitions 

Let M = (I, O, S, 𝛿𝛿,𝜆𝜆) be a finite state machine. The operation of M in state s1 on 
input sequence x=a1a2…ak ϵ I* takes the machine to the states s2, s3, …, sk+1 and 
generates the output sequence of b1b2…bk ϵ O*, so that for i =1, 2, …, k, the states, 
and outputs are si+1 = 𝛿𝛿(si, ai) and bi = λ (si, ai), respectively. Output and state 
transition functions can be extended from an input symbol to a sequence of input 
symbols using these recursive definitions, respectively: 

𝛿𝛿(s, ϵ) = s, 𝛿𝛿(s, ax) = 𝛿𝛿(𝛿𝛿(s, x), a) 
λ (s, ϵ) = ϵ, λ (s, ax) = λ (s, x) λ (𝛿𝛿(s, x), a) 

In addition, these functions can be extended over a set of states instead of just one 
state as follows, with Q ⊆ S a set of states: 

𝛿𝛿(Q, x) = {𝛿𝛿(s, x): s ϵ Q} 
λ (Q, x) = { λ (s, x): s ϵ Q} 

Two states si and sj of machine M are equivalent if and only if for every input 
sequence applied to si and sj the machine produces the same output sequence. In 
other words, for any arbitrary input sequence x, we have λ (si, x) = λ (sj, x). 
Otherwise, the two states are not equivalent and are separated by a separating 
sequence. The formal description of a separating sequence is given in Definition 
2.2. The definition of equivalence for two states in different machines with the 
same set of input and output symbols will be similar. Two machines are 
equivalent if and only if for every state in M there is an equivalent state in M' and 
vice versa. 

Definition 2.2 [8]: The sequence x ϵ I* is the separating sequence for si, sj ϵ S, if   
λ (si, x) ≠ λ (sj, x). 

We know that in a minimal finite state machine no two states are equivalent. 
In the following we present more properties of minimized machines. Every two 
states in a minimized machine with n states have a separating sequence of length 
at most n-1. In order to generate separating sequences for the states of a machine, 
we first form the partition p0, p1, ... of the set of states.  Two states s and t are 
placed in the same class pi if and only if they have no separating sequence of 
length i. In other words, for each sequence x ϵ I* that |x| ≤ i, λ (s, x) = λ (t, x). 
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Generally, p0 = {S} and pi+1 is obtained from pi. 

Lemma 2.1 [8]: If ρi+1 = ρi for some i, then the rest of the sequence of partitions is 
constant, i.e., ρj = ρi for all j > i. 

Proof [8]. We prove the equivalent, contrapositive form: ρi+1 ≠ ρi ⇒ ρi ≠ ρi-1 for all 
i ≥ 1. If ρi+1 ≠ ρi then there are two states s, t ∈ S with a shortest separating 
sequence of length i +1, say ax ∈ Ii+1 (i.e., a is the first letter and x the tail of the 
sequence). Since ax is separating for s and t but a is not, x must be separating for 
δ (s, a) and δ (t, a). It is also a shortest separating sequence, because if y ∈ I* was 
shorter than x, then ay would be a separating sequence for s and t, and shorter than 
ax. This proves that there are two states δ (s, a), δ (t, a) with a shortest separating 
sequence of length i, so ρi ≠ ρi-1.                                                                              ■ 

In a minimized machine these classes will eventually contain only single 
states. Since the maximum length of the separating sequence in a machine with n 
states is n - 1, these classes do not change from i = n-1 onwards. To generate 
separating sequences for the states of a finite state machine, we first form p0, p1, 
... pr, where r is the smallest index such that pr contains only single states. Two 
states s, t ∈ S belong to different classes of p1, if and only if there is an input 
symbol a ∈ I, So that λ (s, a) ≠ λ (t, a). In this way, pi is calculated. For i > 1, ρi is 
obtained from ρi-1. Two states s, t ∈ S belong to different classes of pi, if and only 
if for an input symbol a ∈ I the states δ (t, a) and δ (s, a) belong to different 
classes of pi-1. In this way, all the pi can be calculated for i > 1. 

To obtain a separating sequence with the shortest length for states’ s and t, we 
find the smallest index i such that s and t belong to different classes of pi. As 
mentioned in the proof of Lemma 2.1, in the separating sequence of the form ax, 
the sequence x is the shortest separating sequence for δ (t, a) and δ (s, a). So, we 
choose the input symbol a that takes s and t into different classes of pi-1. That is, δ 
(t, a) and δ (s, a) should be placed in different pi-1 classes. We continue this 
process until we reach p0. The concatenation of these input symbols forms the 
separating sequences s and t. In order to better understand what was said, let us 
consider an example. 

We want to find a shortest separating sequence for states s2 and s3 from 
Figure 2.1. It is necessary to first partition the set of states. As we know, p0 = {S}. 
The states s0 and s1 generate the same outputs for both inputs in I = {a, b} and 
thus are placed in the same class of p1. States s2 and s3 are also placed in the same 
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class for the same reason. In this case, we have: p1 = {{s0, s1}, {s2, s3}}. Because δ 
(s0, a) and δ (s1, a) are in different classes of p1, s0 and s1 each form a singleton 
class in p2. While states s2 and s3 are still in the same class as p2. As we know, 
states s2 and s3 with input b go to states s0 and s1, respectively, which are in 
different classes of p2, so these two states are also separated in p3. Sections p0, …, 
p3 are given below. 

p0 = {{s0, s1, s2, s3}}  p1 = {{s0, s1}, {s2, s3}} 
p2 = {{s0}, {s1}, {s2, s3}} p3 = {{s0}, {s1}, {s2}, {s3}} 

 
Figure 2.1. Finite state machine for an example system 

Note that p3 is the first partition where s2 and s3 are in different classes. By 
applying the input symbol b to these states, the machine goes to states s0 and s1, 
which are in different classes of p2. In this way we found the first symbol of the 
separating sequence. States s0 and s1 also go to s1 and s3, respectively with input a, 
which are located in separate classes in p1. So, a is the second input symbol of the 
separating sequence. s1 and s3 produce different outputs with both input symbols a 
and b. In this case, the last input symbol can be a or b, which leads us to the 
sesparating sequences baa and bab for states s2 and s3. 

2.2.2 Equivalence of finite state machines 

Suppose M = (I, O, S, δ, λ) and M' = (I, O, S', δ', λ') are two finite state machines 
with the same set of input and output symbols. The homomorphism ϴ from M to 
M' is a mapping from S to S', such that for each state s ∈ S and each input symbol 
a ∈ I the following relation holds: 
 

𝛿𝛿′(ϴ (s), a) = ϴ (𝛿𝛿(𝑠𝑠,𝑎𝑎)) 
𝜆𝜆′(ϴ (s), a) = 𝜆𝜆(𝑠𝑠, 𝑎𝑎) 
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If ϴ is a one-to-one function, it is called an isomorphism. Machines M and M' are 
isomorphic if there is an isomorphic mapping from one to the other. In this case, 
the two machines have the same number of states and have the same behavior 
regardless of the differences in state names. As a result, it can be said that 
isomorphic finite state machines are equivalent. 

Equivalence of machines is an equivalence relation on all FSMs with the 
same sets of input and output symbols. Each equivalence class contains a machine 
with a minimum number of states, called a minimized machine. A finite state 
machine is minimized if and only if no two states in it are equivalent. All 
minimized machines in an equivalence class have the same number of states. For 
any two minimized machines in a class, there is also a one-to-one correspondence 
between the equivalent states, which defines a one-to-one isomorphism between 
them. 

For each finite state machine, its equivalent minimized machine can be 
obtained. Equality of states is an equivalence relation on the set of states that 
divides them into equivalence classes. An algorithm for classifying equivalent 
states exists [11]. Each class contains equivalent states and the states of different 
classes are inequivalent. 

To obtain the minimized machine of a finite state machine, we first obtain the 
equivalence classes for states. Suppose that for the machine M = (I, O, S, δ, λ) 
classes B1, ..., Br have been determined. Note that {B1, ..., Br} is a partition on S, 
meaning that Bi ∩ Bj = ∅ (i ≠ j) and 𝑈𝑈𝑖𝑖=1𝑟𝑟  Bi = S holds. Each state of S is in only 
one of these classes. In the case that si and sj are in the same class, they produce 
the same output for each a ∈ I, and also δ (si, a) and δ (sj, a) are in the same class. 
To build the minimized machine M', we consider each class Bi as one state. In this 
case, the set of states of the minimized machine will be S' = {Bi| i= 1, ..., r}. We 
know that all the states in Bi go to states that are all in the same block Bj on an 
input symbol a, and also produce the same output o. Therefore, we have: δ' (Bi, a) 
= t and λ' (Bi, a) = o. In this way, the output and transition functions of the 
minimized machine M' are obtained. 

2.2.3 Conformance testing 

This section is dedicated to the problem of finite state machine conformance 
testing. In the definition of conformance testing, the finite state machines MS and 
MI describe the specification and implementation of the system, respectively. It is 
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assumed that the transition diagram of MS is known, while in the case of MI only 
its input-output behavior is visible. In other words, the machine under test is a 
black-box. We want to check whether MI implements MS correctly, that is, 
whether MI is in conformance with MS or not. Conformance testing is also called 
fault detection, because the goal is to detect points where MI has not implemented 
MS correctly. Conformance is defined as an equality or an isomorphic relationship 
between two machines that specify and implement the system. We say that MI 
conforms to MS if and only if their initial states are equivalent, that is, they 
produce the same output for each input sequence. In order to check the 
conformity, a set of input sequences is generated from machine MS and applied to 
machine MI. If for each input sequence MI produces the expected output sequence 
(that is, the output produced by MS), we say that MI conforms to MS. 

Each pair of input sequence and expected output sequence is considered as a 
test case. The collection of test cases is called a test suite. Applying the test cases 
one after the other is equivalent to applying the sequence obtained from the 
concatenation of these test cases. This input sequence is called checking 
sequence. Its formal definition is given as follows. 

Definition 2.3 [8]: A checking sequence for a finite state machine MS is a 
sequence of input symbols that distinguishes the class of machines equivalent to 
MS from other machines. 

The common goal of all testing methods is to check the conformity of MI 
with MS by generating a checking sequence or a set of input sequences as test 
cases. The difference between these methods is in the cost of producing test cases 
and the fault detection ability. The shortness of the test cases increases the 
applicability of the test method. On the other hand, a test suite should cover the 
implementation as much as possible and discover its faults. The main difference 
between these methods is in the assumptions that each makes about MS and MI 
machines. Some methods can only be used under certain assumptions. while 
others are used with more general assumptions, but they produce a very long 
checking sequence. The following four conditions must be met for each test 
method: 

• MS is minimized. Equivalent machines have the same input-output 
behavior, so it is not possible to distinguish them by observing the outputs. 
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For this reason, any machine that describes system specifications must be 
minimized. 

• MS machine is completely specified. This means that its state transition 
and output functions are defined for each state s ∈ S and each input a ∈ I. 

• MS is strongly connected. That is, all states can be obtained from all other 
states through one or more transitions. In some methods, it is enough that 
all states can be obtained from the initial state. These methods require a 
reset message to reset the machine, otherwise a dead-end may cause the 
test to stop. In this situation, the existence of the reset message replaces 
the strong connection requirement in the specification machine. 

• MI does not change during the test. In addition, its set of input and output 
symbols is the same as MS. 

These four conditions are mandatory and are assumed in all test methods. 
However, there are other conditions that are not mandatory, but help the testing 
process. These conditions are listed below. 

• Equality of the number of states: the number of states in MI is equal to MS. 
In this case, it can be concluded that possible faults do not increase the 
number of states. Based on this assumption, possible faults in MI are 
output errors and transition errors. An output fault occurs when a 
transition in the implementation machine produces incorrect output. A 
transition error is when the implementation machine goes to the wrong 
destination state. A more general assumption is that the number of states 
of machine MI has an upper bound m, which can be larger than the number 
of states of MS.  

• Reset message: Each of the MI and MS machines has a special input called 
reset, which takes the machine from any state to the initial state and does 
not produce any output. In other words, for each s ∈ S we have δ (s, reset) 
= s1 and λ (s, reset) = -. 

• Status message: MI and MS machines have a special input called status, 
which returns their current state as its output. The state of the machine 
does not change by applying this message. In other words, for each si ∈ S 
we have δ (si, status) = si and λ (si, status) = i. 
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• Set message: When the set sj message is received in the initial state, the 
machine goes to state sj and does not produce any output. In other words, 
for each t ∈ S we have δ (reset, set(t)) = t and λ (s, set(t)) = -. 

Assuming that all the conditions mentioned above are met, a simple 
conformance test using the set message is given below. 

Algorithm 2.1 [8]: Conformance test using set message.  
The following steps are repeated for each s ∈ S and each a ∈ I: 

1. By applying the reset message, we transfer the MI machine to the initial 
state. 

2. By applying the set message, we move the MI machine to the s state. 
3. We apply the input symbol a. 
4. We check the conformance of the generated output with the output of MS. 
5. By applying the status message, we check the conformance of the 

destination state with the expected state, i.e., δS (s, a). 

Algorithm 2.1 checks whether MI has correctly implemented MS or not. This 
algorithm detects any output and transition faults in Steps 4 and 5, respectively. In 
addition to the input symbols belonging to I, it is necessary to test the set, reset 
and status messages as well. In order to test the status message, in every si state, 
after using set si, status should be applied twice. First, it must be applied in Step 
3, to ensure that the status is in state si and gives the correct output i. If the 
implementation of set is wrong and takes the machine to sj instead of si, and the 
status message in sj gives the wrong output i; this fault will be discovered during 
the test of sj. The second use of status is in Step 5, in order to check that the first 
use of status did not change the status. Once we are sure of the correct 
implementation of this message, we can test set and reset by applying them to any 
state and checking the correctness of the destination state by status. 

The checking sequence of Algorithm 2.1 is obtained from the concatenation 
of reset, set(s), a and status for each s ∈ S and each a ∈ I. Its length is 4pn where 
p = |I| is the number of input symbols and n = |S| is the number of states of the 
machine. The main weakness of Algorithm 2.1 is the need for the set message, 
which is not always available. Sequences that traverse the machine and go 
through each state and transition at least once can be used in place of set. 

In the method that will be presented below the status message is not used to 
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specify the current state of the machine. This method assumes that the machines 
do not have a status message (but have a reset message), and use separating 
sequences to detect a state. It worth noting that because MS is minimal no two of 
its states are equivalent. As a result, for both states si and sj there is an input 
sequence x, which is considered a separating sequence and differentiates these 
two states by generating different outputs i.e., λ (si, x) ≠ λ (sj, x).   

2.2.4 The W test method 

The W method is one of the most widely used methods for testing systems 
modeled as finite state machines. This method only needs the reset message, and 
it uses a covering transition set and a separating set, which are used to test 
transitions and recognize states, respectively. The minimality of the machine that 
describes the specification (MS), is necessary to calculate the separating set and is 
considered one of the necessary conditions for using the W method. Another 
condition is that MS and MI must be deterministic and completely specified, and 
all their states can be accessed from the initial state. The number of states of MI 
has an upper limit of m, which can be greater than n, which is the number of states 
of MS. 

In the W method, all the transitions of MI are traversed using the transition 
covering set. In each transition, in addition to comparing the output with the 
output of the corresponding transition in MS, the correct destination of the 
transition must also be checked. For this purpose, the separating set is used. The 
transition cover set is formally defined as follows. 

Definition 2.4 [8]: The transition cover set P of the finite state machine MS is a 
set of input sequences such that for each s ∈ S and a ∈ I, there is a sequence x in 
P that starts from the initial state and ends at s with transition a. In other words,  

∀ s ∈ S and ∀ a ∈ I, ∃ x ∈ P such that x = y.a and δ(s1, y) = s 

The set P can be obtained using a breadth-first traversal of the transition 
diagram of MS. This set is closed under prefix, meaning that if x belongs to P, 
then every prefix of x also belongs to P. One way to obtain the set P is to 
construct a test tree T from MS and then extract partial paths from it. A partial 
path is a sequence of edges starting from the root of the tree and ending at a 
terminal or non-terminal node. Since each edge of T is labeled with an input 
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symbol, a partial path will be a sequence of input symbols. Therefore, P is a set of 
input sequences. Note that ϵ (the empty input sequence) is a member of every set 
P. Algorithm 2.2 shows the steps of constructing the test tree. 

Algorithm 2.2 [8]: Test tree construction 

1. Set the initial state of MS as the root of the T tree. This is considered as 
level 1 of the tree. 
2. Suppose the tree is built up to level k. Then level k+1 is built as follows: 

(a) From left to right, consider each node t of level k. 
(b) If the node t is the same as one of the level j, where j ≤ k, it is 
considered as the last node. 
(c) Otherwise, suppose the label of this node is si. For each input x, if 
the machine MS has a transition from si to sj, an edge with label x and 
destination sj is connected to node t. 

The W method uses the set P to test each MI transition and the separating set 
to check the destination node of that transition. The separating set or in short W is 
formally defined as follows: 

Definition 2.5 [8]: The separating set of finite machine MS is a set of W input 
sequences such that for each separate state s and t in S, there is an input sequence 
in W, which applied to these two states produces different outputs. In other words, 
we have: 

∀ s, t ∈ S, ∃ x ∈ W → λ (s, x) ≠ λ (t, x) 

The set W exists for every minimized finite state machine. This set is not 
unique and the fewer the sequences, the longer their lengths. To obtain the set, it 
is necessary to iteratively partition the state set of the machine into Bi blocks. 
Initially, w = ∅, B1 = S, and i = 1. We then iteratively choose two separate states s 
and t from Bi and obtain a separating sequence x for them. We add the sequence x 
to W and break the block Bi into smaller blocks based on the output of each of its 
states according to sequence x. so that all states that produce the same output for x 
are placed in the same block. We continue this process until all the blocks become 
singletons, and thus obtain the set W.   

For each two separate states, the set W contains a separating sequence that 
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distinguishes these two states from each other. So, the outputs produced by one 
state by applying sequences W are different from the outputs of another state. Due 
to this feature, the W method uses this whole set instead of the status message to 
check the conformance of the destination state of each transition with what is 
expected. Since the set W can contain several sequences, the machine must go to 
each destination state several times to apply all these sequences to each 
destination. For this purpose, reset message and the set P are used. As a result, the 
input sequences that the W method produces as test sequences are obtained by 
concatenating each sequence P with each sequence W. It should be noted that at 
the beginning of each test sequence it is mandatory to use the reset message to go 
to the initial state. In other words, the set of test sequences produced by the W 
method is equal to {reset}.P.W. Each output fault is detected by a sequence of P 
and each exit fault is detected by a sequence of W. If no error occurs when 
applying these sequences to MI and the set of outputs produced is the same as the 
outputs of MS, then the implementation is proven to be correct. 

To better understand the performance of the W method, we will use the 
following example. Figure 2.2(a) shows a specification finite state machine Ms. In 
this machine I = {a, b} and O = {0, 1}. To obtain the test sequences, we first 
calculate the separating set. The sequence a, distinguishes the states s0 and s2, as 
well as the states s1 and s2. To distinguish s0 from s1, b must also be included in 
the separating set. As a result, we have W = {a, b}. 
 

  
(a) specification machine (b) implementation machine 

Figure 2.2 Finite state machines describing the specification and implementation 
of a system 

To obtain the transition cover set, we have built the test tree using Algorithm 
2.2, as seen in Figure 2.3. The partial paths of this tree form the transition cover 
set and therefore P = {ϵ, a, b, ba, bb, bba, bbb}. Now, having the covering and 
separating sets, we can obtain the test sequences. Table 2.1 shows the test 
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sequences along with their output in MS and the transitions tested. In this table, r 
represents reset. 

 
Figure 2.3 A test tree for MS machine 

Figure 2.2(b) shows an incorrect implementation of MS. By applying the test 
sequences from Table 2.1 to this implementation machine and comparing its 
outputs with the expected outputs of each sequence, implementation faults are 
discovered. The transition fault in this machine, which goes from state s2 with 
input a to state s0 by mistake, is detected by the rbbaa test sequence and output 

fault s1 
𝑏𝑏/0
�� is detected by the rbb test sequence. 

P ϵ a b ba bb bba bbb 

Trans. s0
𝜖𝜖
→ s0 

𝑎𝑎/0
�� s0 s0 

𝑏𝑏/0
�� s1 s1 

𝑎𝑎/0
�� s0 s1 

𝑏𝑏/1
�� s2 s2 

𝑎𝑎/1
�� s2 s2 

𝑏𝑏/0
�� s2 

r.P.W ra rb raa rab rba rbb rbaa rbab rbba rbbb rbbaa rbbab rbbba rbbbb 
output 0 0 00 00 00 01 000 000 011 010 0111 0110 0100 0100 

Table 2.1 Test sequences for testing specification machine. 

2.3 Product line engineering 

The way that goods are produced has changed significantly in the course of time. 
In the past, products were handcrafted for individual customers. Over time, the 
number of people who could afford to buy various kinds of products increased 
and the production lines emerged, which enabled mass production. This mass 
production reduced costs compared to customized production and at the same 
time reduced the possibilities for diversification. Customers were content with 
standardized mass products for a while, but all the people did not have same 
reasons for buying products and therefore, all of them did not want the same type 
of products. For example, it can be said that some people want an automobile 
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suitable for urban life and others for living in the countryside. Some customers 
need a small size automobile and others need a larger family size automobile. 
Therefore, the industry faced an increased demand for customized products and 
this was the beginning of mass customization, which means taking into account 
the needs of customers and preparing the products that they want. In fact, mass 
customization is the large-scale production of goods tailored to individual 
customers’ needs. From the customer's point of view, mass customization means 
the ability to have an individualized product. For a company however, mass 
customization means higher technological investments which leads to higher 
prices for the individualized products and/or to lower profit margins for the 
company. Both effects are undesirable, so many companies started to introduce 
common platforms considering common parts in different products. The use of a 
common platform for different products reduced the cost of production. In 
general, a platform is any base of technology on which other technologies or 
processes are built. The combination of mass customization and a common 
platform allows one to reuse a common base of technology and, at the same time, 
to bring out products in close accordance with customers’ wishes. The result of 
this combination is product line engineering [2]. 

2.3.1 Creating the Platform 

In single-system engineering products are regarded as independent, self-contained 
items this means having distinct projects for developing distinct products. But 
developing by product line engineering requires the creation of a platform that 
suits all products. For this purpose, attention is paid first to what is common 
between the products and then to their differences. In the first step artefacts that 
can be reused for all products are provided. The products of a product line can be 
different in the functions they provide, the requirements they fulfill, and even 
their architecture. These differences should be identified and described during the 
development process. Creating flexibility in reusable artifacts allows for mass 
customization.  

Different automobiles in an automobile production line can have different 
windshield washers, so machines should be designed to have a common approach 
in supporting different engines for these washers. Along with this flexibility 
comes a series of limitations. For example, in an automobile with the possibility 
of opening the roof, it is necessary to comply with the limitation that when the 
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roof is open the rear window washer is disabled [2].  
Flexibility is a precondition for mass customization; it also means that we can 

pre-define what possible realizations shall be developed. In addition, it means that 
we define exactly the places where the products can differ so that they can have as 
much in common as possible. For example, in an automobile manufacturing 
product line, there is a limited number of window washers that must be identified 
in advance. In the context of software product line this flexibility is called 
variability. This variability is the basis of mass customization. Further 
explanations regarding variability are given below. 

The variation point is a point in description of the product line which is 
different for different products. Different initial values to the variation point result 
in different products. A configuration of the product line defines specific values 
for the variation points. 

2.4 Software product line engineering  

Software product line engineering is the development of applications using 
platforms and mass customization. Development of applications using platforms 
means planning ahead for reuse, building reusable parts, and reusing components 
that are built for this purpose. Development of an application for mass 
customization means applying the concept of managed variability. It means that 
both the commonalities and the differences of product line applications must be 
modeled. 

Using product line engineering principles for developing software reduces the 
cost of software development, because platform artifacts can be reused in several 
different systems. Due to the testing of artifacts in different products, the quality 
of the software also increases. In addition when changes are made in an artifact 
(for example, to correct an error), these changes are propagated to all products 
that use that artifact, and as a result maintenance costs are reduced. 

Adapting product line engineering to software development has always 
encountered obstacles. Certain prerequisites are needed to overcome these 
obstacles. For a long time, a major obstacle to adapting product line engineering 
was the lack of needed technology for simple implementation of the rules of 
product line engineering. One of the most important technologies is object-
oriented programming. This technology makes it easy to use concepts such as 
encapsulation that are necessary to realize managed variability. Another important 
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achievement is the introduction of component technology, which makes it 
possible to encapsulate software in parts with low connectivity. Component 
technology supports the realization of managed variability by limiting the range in 
which variability is possible. Late binding and dynamic binding methods allow 
delays in configuration related decisions. Therefore variability can be designed 
and implemented without worrying about the final shape of various 
configurations. The use of these techniques facilitates the implementation of 
platforms and provides a simple way to realize mass customization. 

2.4.1 Software product line engineering framework 

A software product line engineering framework is a combination of the core 
concepts of product line engineering, namely the use of platforms and the 
provision of mass customization. In terms of software, a platform is a collection 
of reusable artifacts that include all types of software development products, 
including requirement models, architectural models, software components, and 
various test plans. The concept of variability of platform must then be introduced. 
As a result, the artifacts that are different in various products of the software 
product line are modeled using variability. There are two development processes 
in software product line engineering: 

• Domain engineering: In domain engineering, product line similarities 
and differences are identified and then a reusable platform is 
developed. 

• Application engineering: Application engineering is a process of 
software product line engineering in which product line applications 
are built by reusing domain artifacts and applying product line 
variability. In other words, this process is responsible for extracting 
product line applications from the platform obtained in domain 
engineering. 

The advantage of separating these two processes is to separate the two 
categories of (a) development of a strong platform and (b) building special 
customized applications in the shortest time. 

2.4.2 Variability 

The definition and implementation of variability throughout the various phases of 
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the software product line cycle is supported by the concept of managed 
variability. The time to decide on variability is called the variability binding time. 
In common language, the word variability stands for the ability to change or the 
tendency to change. However, the variability that we are considering is purposeful 
rather than accidental. Answering three questions helps define product line 
variability: 

1. What changes? Answering this question means identifying parts and 
features of the environment that change. In fact, this question leads us to the 
definition of variability as a variable part of the existing world or a variable 
feature of such a part. 
2. Why does the subject of variability change? There are various reasons for 
changing a part or its feature.  including different needs of stakeholders, 
different local laws, technical reasons, etc. Additionally, if there is a 
dependency between different parts, then the reason for variation of one part 
can be the variability of another part. 
3. How does the subject of variability change? This question is related to 
different forms that a variability subject can take. To identify the different 
forms of a variability subject, a variability object is defined. A variability 
object is a special instance of a variability subject. 

Considering these three questions plays an important role in thinking about 
variability. Being aware of variability and acting consciously on it is an important 
prerequisite in modeling variability. In the field of software product line 
engineering, a variation point is a representation of the variability subject in the 
product domain, enriched with context information. 

2.4.3 Variability models 

Variability can be defined as a part of software development artifacts, or as a 
separate model. The variability model represents the common characteristics and 
artifacts of a product line and is actually used to manage variability in the product 
line. Many modeling methods for variability have been proposed over the recent 
years, and each one uses its own concepts for modeling variability. Among these 
methods, component-based models such as Koala [13], feature model [14], 
orthogonal variability model [2], and unified modeling language models [15] like 
use case model [16] are worth mentioning. In this thesis we use the feature model 
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to model the variability of the product line. This model is described below. 

2.4.3.1 Feature model 

The feature model is widely used in software product lines to manage shared and 
variable features. The products of a software product line are distinguished from 
each other through their features. In fact, a unique product is defined by features 
and a product line is defined by a feature model [17]. The feature model was 
proposed for the first time in 1990 [14]. The following is one definition of feature 
[14]: "Feature means an outstanding or distinctive aspect, quality or characteristic 
of a software system or systems, which can be seen by the end user". 

Note that the feature is defined as a visible property for the user [14]. 
However, elsewhere features are considered for each stakeholder including 
customers, analysts, architects, developers, etc., and therefore a feature can 
represent any functional or non-functional property at the level of requirement, 
architecture, component, platform or any other level [18]. 

If we choose the feature model as the variability model in the software 
product line, a configuration will be a set of features. Also, a valid configuration 
is a configuration that satisfies the constraints and limitations of the feature 
model. Each valid configuration results in the production of one product from the 
product line. The presence of a feature in a configuration makes the product 
corresponding to that configuration have the desired feature. In Chapter 4, where 
our proposed method is presented, configuration means valid configuration. 

A feature information model represents all possible products of a software 
product line as features and relationships between them. A feature model is a set 
of features that are arranged hierarchically according to the relationships between 
them. These relationships are divided into two categories: 

• Relationships that can exist between the parent feature (or compound) 
and its child features (or sub-features). 

• Cross-tree (or cross-hierarchy) relationships or limitations that usually 
include a requirement relationship or an exclusion relationship 

Feature charts can be defined more precisely [19]. In fact, a feature model 
consists of a feature graph and additional information for each feature. A feature 
graph consists of a set of nodes, a set of directed edges, and a set of arcs for the 
edges. Arcs connect a subset of edges related to a node and classifies the sub-
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nodes of a node. Table 2.2 shows the graphical symbols of the feature diagram. 
The description of these symbols is given below. 

Symbol 
  

 
 

  

Description Mandatory 
Feature 

Optional 
Feature 

Alternative 
Feature 

Or-
Feature Requires Excludes 

Table 2.2 Graphical symbols of the feature diagram [19]. 

• Mandatory: A child feature has a mandatory relationship with its parent if 
the child feature exists in all products in which the parent attribute 
appears. The features at the root are always mandatory and are present in 
all products. 

• Optional: A child feature has an optional relationship with its parent if the 
child feature can optionally exist in all products in which the parent 
attribute appears. 

• Alternative: A set of child features have alternative relation with their 
parent, if only one of them can appear in the product of which the parent 
feature is a part. 

• Or: A set of child features have an or relationship with their parent, 
whenever one or more of them can appear in the product of which the 
parent feature is a part.  

In addition to relationships between parent and child features, a feature model 
can also include constraints between features. These restrictions include: 

• Requires: If feature A requires feature B, choosing A in a product requires 
choosing B in that product. 

• Excludes: If feature A excludes feature B, both features cannot be part of 
the same product.  

In addition to these limitations, more complex relationships can exist between 
features in the form of logic formulas [20]. Figure 2.4 shows a simple feature 
model of a mobile phone. 

Based on the feature model in Figure 2.4, all mobile phones must be able to 
support calls and also include a screen for basic, high-resolution or colorful 
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information display. Phones may also support GPS and multimedia devices such 
as cameras or music players or both. Phones that include a camera need a high-
resolution screen. GPS and basic display are incompatible features and mutually 
exclusive. 

 

Figure 2.4 A sample feature model of mobile phones [17] 
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Chapter 3 

Previous Work 

Two essential parts of this research are behavioral modeling and reactive system 
product line testing. Therefore it is necessary to review and categorize the 
previous work that is related to each of these two concepts. Also, the position of 
the work done in this research, which is given in the next sections of the thesis, 
should be specified in this context. There is a taxonomy of the work done for 
model-based test case generation and prioritization [21]. In this section, the 
necessity of conducting this research and its advantages compared to previous 
works are also discussed. 

3.1 Modeling product line of reactive systems 

A design method based on integrated modeling language for the software product 
line named PLUS (Product Line UML-Based Software Engineering) was 
developed [15]. This method extends the UML-based modeling used for single-
system to be suitable for software product line modeling. PLUS aims to model 
commonalities and variabilities in a software product line. The PLUS method is 
an informal method for modeling the entire software product line. Behavioral 
modeling can be used in this method to model the reactive software product line. 

One of the activities performed in the PLUS method is behavior modeling 
with a finite state machine. Many systems are state-dependent. In such systems, 
the activities depend not only on the input but also on the previous state of the 
system. A state transition diagram, state transition table, and state chart can be 
used to define the finite state machines. The notation of state tables in UML is 
based on an existing state table notation [22]. In the PLUS method, the statechart 
is used. The inherited state machine and parameterized state machine can be used 
to model variability in the software product line.  

Inheritance is one of the two main methods for modeling variability with the 
state machine. A specialized state machine for a product is a child state machine 
that inherits from the parent state machine which describes the product line 
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commonalities. This machine inherits all the states, transitions, and activities of 
the parent machine, and also by adding new states, transitions and activities, it can 
describe the new product. Another method to model variability with a state 
machine is to use a parameterized state machine. In this method, there is only one 
parameterized state machine that includes all states, transitions, and activities 
related to all features of the product line. For each feature there is a Boolean 
condition called the feature condition. If the Boolean condition of a feature is true, 
that feature is selected.  If there are several features and only one of them can be 
present in the product, only one of the conditions can be true per product. Feature 
conditions are placed on transitions as transition conditions. Therefore in order for 
a transition to be performed, in addition to the presence of the desired input, the 
condition of the corresponding feature of that transition must also be true, which 
means that the corresponding feature is present. For each product, a number of 
these feature conditions are true [15]. 

We presented above a software product line modeling methods from the 
perspective of software engineering. Methods for the formal modeling of the 
software product line have also been provided, including modeling by transition 
systems [23, 24, 25, 26], Petri net [27], and process algebrae [28, 29].  

A behavioral model called Extended Modal Labeled Transition System 
(EMLTS) [26] is proposed to model different states of variability that usually 
comes in the definitions of product families. 

An EMLTS describes a family of products by determining the mandatory and 
optional transitions of each state of a system. A labeled transition system consists 
of a set of states and a set of actions, which are used as labels for transitions 
between states. An important point when modeling the behavior of a product with 
a labeled transition system is that different products perform different actions in 
the same state. So all the different facilities, which make the products belong to 
the family, should be included in the definition of the product family. This can be 
done by defining Modal I/O Automata to model variability [23]. A Modal I/O 
Automaton with two transition relations determine allowed (may) and required 
(must) behaviors. Most of the variability features can be modeled by these 
transition relations in the product line definitions. However, the alternative 
variability cannot be modeled by this machine and thus the model was extended 
[3], by the introduction of EMLTS.  

An EMLTS introduces a family of labeled transition systems, where any 
labeled transition system that describes a product can be extracted from that 
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extended modal labeled transition system. 
An Extended Modal Labeled Transition System (EMLTS) is a quintuple (S, 

Act, s0, □, ◇), where S is a set of states, Act is a set of actions, s0 ∈ S is the initial 
state, □ ⊆ S × 2Act×S is the “at least k of n” transition relation, and ◇ ⊆ S ×2Act×S is 
the “at most k of n” transition relation [3] which is shown as:  

𝑠𝑠𝑠𝑠1, . . . ,𝑎𝑎𝑎𝑎
→
□𝑠𝑠1, . . . , 𝑠𝑠𝑠𝑠 and 𝑠𝑠𝑠𝑠1, . . . ,𝑎𝑎𝑎𝑎

→
◇𝑠𝑠1, . . . , 𝑠𝑠𝑠𝑠 

In these two relations, □ mean that in any product of the family should have 
at least one of the n transitions 𝑠𝑠𝑠𝑠 𝑖𝑖

→
𝑠𝑠𝑠𝑠, while in ◇ any product of the family should 

have at most one of the n transitions. It is noteworthy that in each of these two 
relationships there is a target state for each action. Using these two relations 
various variability can be modeled. For example, the relation exactly one of the n 
transitions, which represents alternative variability, is obtained from □ ∩ ◇. 

A process algebra can also be used to describe the specifications of reactive 
software product lines [28]. In this paper, PL-CCS is introduced as an extension 
of CCS [30] to model the interaction of software components used in software 
product lines. While CCS is suitable for describing the relation of software 
systems, it does not support the definition of a set of systems (product family). 

More specifically, CCS is extended [28] by adding the variants operator ⊕, 
which allows modeling the alternative behavior i.e., alternative process. This 
means that only one of the alternative processes will be existing in the final 
system. The main advantage of the modeling product line behavior with PL-CCS 
is that it provides automatic verification by model checking. 

The models introduced so far to describe the product family have not 
considered the importance of features as the unit of differentiation. That is, they 
can model different behaviors but are not able to associate each product with its 
behavioral description and characteristics. In addition, they do not use the 
information available in the variability models such as the copresence of several 
features in a product or the prohibition of the presence of a feature by another 
feature. To deal with these challenges, one can extend the transition system with 
features and introduce featured transition system (FTS) to describe the behavior 
of the entire product line [25]. In this model, each behavior is explicitly associated 
with the feature that causes that behavior, and this association takes place at the 
transition level. For this purpose, each transition is labeled with a feature. In some 
cases, a feature removes transitions rather than adding them. To show this, it is 
necessary to define a priority relationship between transitions. A priority 
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relationship can be defined between two transitions that leave the same origin 
state and are labeled with different features. In this case, for any product that 
includes both features, the transition with lower priority will be removed. In 
general, the priority relationship is a solution for modeling situations in which a 
feature overrides the behavior of another feature. 

We know that every product consists of a set of features. To obtain the 
behavior of a specific product, it is enough to project the model that specifies the 
entire product line i.e., the FTS on the features of that product. For this purpose, 
we remove all transitions labeled with features not available in that product, as 
well as lower-priority transitions that are overridden by higher-priority transitions. 
The result of the projection is a normal transition system. 

3.2 Software product line testing 

Efficient testing strategies are very important for any organization where the share 
of software development costs is high. This issue is more critical for the 
organizations that use a software product line. Due to the large variety of products 
deriving from the product line platform, software product line testing is a complex 
and costly practice. In the early research on product line not much attention was 
paid to the issue of product line testing, but over time, the need to investigate this 
field became evident [5]. 

High productivity in product line engineering requires an efficient testing 
method, and the testing methods are being used in single-system engineering are 
not good and efficient enough for this purpose. In the single-product production, 
testing accounts for about 50% of the total effort and cost, and this percentage 
increases in product line engineering. Therefore, it can be said that testing is a 
bottleneck in the development of product families [6]. The main challenge in 
software product line testing is the large number of required tests. To fully test the 
product line it is necessary to test all the products. We know on the other hand 
that the number of products grows exponentially with the increase in the number 
of features. Accordingly, the main problem is to reduce the redundant tests and 
minimize the effort required for testing through the reuse of the test artifacts. 

3.2.1 Automated and model-based test generation 

The idea of proactive reuse in product family testing was introduced [6], where 
reusable test cases generated in domain engineering are used to test different 
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products. The paper presents the ScenTED (Scenario based TEst case Derivation) 
method, which is a model-based and reuse-based method for test cases derivation. 
Model-based testing is a method of deriving test cases in single-system 
engineering and basically consists of two main steps as shown in Figure 3.1. In 
the first step a test model is created from the requirements, and in the second step 
test cases are generated using coverage criteria or other test extraction techniques. 

 

Figure 3.1 Model-based Testing in Single System Development [6] 

The model-based testing technique includes several advantages. For example, 
test cases are generated in an organized and repeatable process with stopping 
rules. Therefore, model-based testing is a prerequisite for the automated 
generation of test cases. Another important aspect is that the test engineers will 
check the correctness of the requirements by creating the testing model. This 
means that the defects in the requirements, such as ambiguity or lack of 
completeness, can be discovered during the development of the testing model. 

In applying model-based testing to the software product line, in addition to 
domain engineering, one must also consider application engineering. The test 
models produced in domain engineering include variability and the generated test 
cases include variability information. In the application engineering test a new test 
model is actually not developed. In other words, in application engineering the 
test model of each product is developed based on the requirements of that product 
and by reusing the domain test model. In this way, variability is removed from the 
domain test model and new requirements are added to it. Test cases can then be 
derived in two steps. First, reusable test cases are selected from domain 
engineering. Some of them need to be changed to adapt to the product, based on 
the variability selected in that product. In the second step, based on the new 
requirements added to the test model, new test cases are generated if necessary. 
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Figure 3.2 shows the application of model-based testing in a software product 
line. 

 

Figure 3.2 Model-based Testing in Software Product Family Engineering [6] 

In the ScenTED test method it is assumed that the requirements are specified 
as use cases. In this method, activity diagrams are used for the test model and 
sequence diagrams are used for the test case scenarios. Test case scenarios 
describe the activities of the engineer responsible for the test and the responses of 
the system [6]. 

A model-based testing method for a software product line generates test 
specifications from use cases and the feature model. This test specifications are 
configured and used to test each product in the product line. Hasan Gomma, the 
provider of the PLUS method that we mentioned earlier, presents a model-based 
software product line testing method that reduces the number of test specifications 
necessary to cover all use cases, features, and all possible combinations in the 
product line [31]. The CADeT (Customizable Activity Diagrams, Decision Tables 
and Test Specifications) method presented in this paper uses both test cases and 
feature models to generate test specifications. Another process is proposed to 
generate test cases based on application cases and variability model [32]. 

Test case generation models were also established based on formal 
specifications that are described by process algebrae [33, 34]. An incremental 
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method for test generation using Alloy also exists [4]. Alloy [35] is a declarative 
language based on relational logic to describe specifications. The Alloy analyzer 
is then used to generate the test incrementally, which means that the analyzer is 
run more than once and on the partial specifications, which makes the problem 
easier. Li, et al. [36] utilize the information in execution traces to reduce the 
number of tests runs for each product in a software product line. 

3.2.2 SPL-based testing methods 

SPL-based testing methods generate reusable test cases from software product 
line requirements and use them to test products derived from the product line. 
Three methods are presented [37] to generate tests from product line requirements 
in the form of use cases, and then a coverage criterion is presented based on the 
use case to apply the tests. A subsequent paper [38] deals with the problem of 
defining and managing the relationship between the feature model and the tests by 
a decision model. In this paper, the decision model that is used for feature 
selection during product derivation is also used for selection and customization of 
test cases. 

The issue of how to make test-ready the models generated for a product line 
in order to create reusable test cases for products derived from that product line 
was also addressed [39]. In this article, the analysis models and requirements of a 
product line developed with the PLUS method are prepared for testing. A test-
ready model contains enough information to automatically generate test cases 
using one or more test strategies. 

Reusable test cases can be generated during domain engineering [40, 41]. 
However, these methods are not model based and the test cases are derived from 
the requirements described in natural language. Hartmann et al. [42] use the 
activity diagram for the test model, which includes variability but test cases are 
only generated in application engineering. Therefore the method is model based, 
but does not consider the reuse of test cases. Finally, it is possible to not use test 
models and yet have specifications that are structured and include variability [43]. 
Test cases for each product are created based on these specifications.  
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3.3 Reactive system model-based testing 

Reactive systems are hardware and software systems with non-terminating 
behaviors that interact with the external environment through visible events. 
Communication protocols, web servers, processors, and operational systems can 
be mentioned among these systems. Since the product lines of reactive systems 
are considered in this research, we briefly mention here some of the work that has 
been done so far in the field of model-based testing of such systems. Finite state 
machines and labeled transition systems are both widely used to model reactive 
systems. The concepts and definitions related to finite state machines and the 
conformance test of these machines were explained earlier. Labeled transition 
systems were introduced by Keller [44] and are used to model context-sensitive 
systems (concurrent and sequential programs) as well as hardware circuits. 

Input-output conformance (IOCO) test selection method is a formal, black-
box, and model-based testing method for testing functional behaviors. The 
specification describes the input and output interactions of the system with its 
environment as a labeled transition system. 

The IOCO test method generates test cases based on the specification to 
determine whether the implementation under test (i) conforms to its specification 
(s) or not, or whether the relation 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is established or not. 

Another method for model-based testing of reactive systems is to use UML 
2.0 test profiles. While UML models focus primarily on the definition of system 
structure and behavior, they provide only limited means for describing test 
objectives and test procedures. In 2001, a consortium was built by the Object 
Management Group (OMG) in order to develop a UML 2.0 profile for the testing 
domain. A UML profile provides a generic extension mechanism for building 
UML models in particular domains. The UML 2.0 Testing Profile (U2TP) is such 
an extension which is developed for the testing domain. It bridges the gap 
between designers and testers by providing means to use UML for both system 
modeling and test specification. This allows a reuse of UML design documents 
for testing and enables test development in an early system development phase. 
The UML 2.0 Testing Profile provides concepts to develop test specifications and 
test models for black-box testing. Four concept groups are introduced in the 
profile, and they cover the following areas: test architecture, test behavior, test 
data, and time [8]. 
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3.4 Conclusions so far 

In this thesis, we focus on modeling the reactive software product line by means 
of a finite state machine that is, a formal method. As mentioned, modeling with a 
labeled system is also one of the formal methods for describing the behavior of 
reactive software. However, due to the fact that in the ioco testing method an 
infinite number of tests are produced using LTS describing the specifications of 
the system, using labeled transition system is not suitable for our approach. 
Indeed, FSM testing theory is finite, and we exploit this in the evaluation of our 
method, where the quantity of test cases is important. 

Due to the structural similarity of the finite state machine to the labeled 
transition system, we start from a previously developed method [25] to apply 
variability to finite state machines. Therefore in this thesis the entire software 
product line is modeled by a finite state machine labeled with features. 
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Chapter 4 

Proposed method  

4.1 Introduction 

A product line allows producing products with common features. These features 
can be used in the design and implementation of these products. That is, instead of 
designing and implementing each product separately, we can use the common 
points of these products, and design and implement the product line. In this thesis 
we want to take advantage of the similarity of the products while testing the 
software product line. This way, we provide a method that produces the test cases 
required for testing all the products of that product line, based on the specification 
of the entire product line and according to the similarities and change points. In 
fact, using this method we obtain reusable test cases. 

We use a small product line as a running example, designed to provide a 
better understanding of the method by applying the proposed test method to it. 
The description of this product line follows. The behavior of the product line is 
modeled with a finite state machine. However, it is necessary to use an extended 
type of finite state machine. The description of this extended finite state machine 
and how to model variability with it is given in Chapter 2.  

4.1.1 Running example 

In order to better understand the steps of the test method presented in this 
research, the beverage vending machine product line is introduced as a running 
example. The feature model of this product line is shown in Figure 4.1. In the 
specifications of this product line, we assumed that milk is only served with 
coffee. We apply this condition with the relationship M requires C. It should also 
be noted that any machine that serves tea certainly serves plain tea. Feature F is 
related to serving free soda and it excludes features T and C. This means that a 
machine that can serve free drinks only serves soda.  
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Figure 4.1 Feature model of, the beverage vending machine product line 
 

The initial version of the drink machine delivers a soda upon receiving a coin 
and then goes back to receiving orders. The modeling of this drinking machine 
with a finite state machine is shown in Figure 4.2 (a). Among the other features 
that can be added to this initial version are serving tea and coffee. This machine 
receives a coin and returns cack as an output as confirmation of receiving the 
coin. From there, it may serve soda, tea, or coffee, depending on the desired 
configuration feature. To order coffee, another coin must be given to the machine. 
After requesting coffee, the customer can request milk to be added to the drink. 
The machine with the possibility of serving coffee with milk and/or sugar is 
modeled in Figure 4.2 (c). 
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Figure 4.2 Beverage vending machines, modeled with finite state machines 

4.2 Product line behavior modeling 

In this thesis we intend to produce reusable test cases. That is, from the 
specifications of the entire product line generate a set of test cases which will be 
used to test each product from the product line. For this purpose, the behavior of 
the entire product line must first be described by means of an extended finite state 
machine. For this, we consider the earlier idea of modelling the product line using 
a featured transition system [25]. We saw more details about this method in 
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Chapter 3. 
As we know, each function in a product line is related to a feature. In this 

case, any product that has that feature has the corresponding function. To 
illustrate this, we label each edge of the machine describing the product line with 
its corresponding feature. In fact, the machine we designed for modeling in this 
research is a featured finite state machine (F2SM). This machine is formally 
introduced as follows. 

Definition 4.1 Featured finite state machine 
An F2SM, is a tuple in the form of f = (I, O, S, δ, λ, d, γ, Prio), so that we have: 

• (I, O, S, δ, λ) is a finite state machine 
• d is a feature model (see Section 2.4.3.1) 
• γ : δ → F is a function, labeling transitions with features 
• Prio ⊆ δ × δ Specifies the priority between some transitions 

The finite state machine which is part of the F2SM models all possible 
functions of all products in the product line. d is the feature model of the product 
line from which all valid configurations can be derived. F is the set of all the 
features and MF is the set of mandatory features. The set VC (which stands for 
Valid Configurations) contains all the valid configurations that can be extracted 
from the feature model. The function γ labels each transition of the finite state 
machine with its corresponding property. This function is surjective because for 
every feature in F there is at least one transition labeled with that feature. Also, 
because more than one transition can be labeled with the same attribute, the 
function is not injective. 

Defining the priority relation between transitions is used to apply conditions 
or to consider some assumptions about the products of the product line. Priority 
can be defined between two transitions tr1 and tr2 that have the same initial state 
and are labeled with different attributes f1 and f2, respectively. If it is (tr1, tr2) ∈ 
Prio, then the priority of transition tr1 is higher than tr2, and transition tr2 would 
be removed from any product that has both features f1 and f2. It should be noted 
that a priority must be defined between two transitions that have the same origin 
and input but are labeled with different features. In this case, in the products that 
include both features, one of the two transitions is removed and the deterministic 
property of the finite state machine of the product is preserved. As we know, in 
applying the W test method the finite state machine describing the characteristics 
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must be deterministic and completely specified. In the method presented in this 
research, which is a modification of the W method, it is necessary to establish 
these conditions. The F2SM that describes the specifications of the product line is 
called MS. In order to label each transition in MS with its corresponding feature we 
obtain the set of input symbols of the machine, from the product of the set I with 
the features set F. In order for the machine to be completely specified, it is 
necessary to add a new output error to the set of output symbols and an additional 
state called ser to the set of states. The output of the transitions in which the input 
is not labeled with its corresponding feature is error and goes to ser state. 

Figure 4.3 shows the F2SM describing the beverage vending machine product 
line. For convenience, transitions with error output and into ser are not shown. For 
example, the output transitions from s0 with input from the set I × F − {(V, coin), 
(F, sodareq)} all go to ser and produce the error output. As it can be seen, the 

priority of transition 𝑠𝑠0 →
(𝐹𝐹,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)

𝑆𝑆6 is higher than 𝑆𝑆0 →
(𝑉𝑉,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)

𝑆𝑆1, so in any 

product where the feature F is present the transition 𝑆𝑆0 →
(𝑉𝑉,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)

𝑆𝑆1 is removed 
(note in passing that V is present in all products). The definition of this priority 
makes it possible to serve free soda in products that have the F feature. We know 
that implicitly there is a relation of need between the features of the child and the 
parent. Therefore, we also added the requirement relations between N and L 
features with their parent T, to the set of requirement relations. 

As mentioned earlier, each configuration is a set of features. To obtain the 
characterization machine of a configuration, we remove those edges from the 
F2SM of the product line which are labeled with features not present in that 
configuration. We also remove edges with lower priority if necessary. In this case, 
some states may no longer be available from the initial state, and the machine 
may not be minimal any longer. Therefore, by removing the unreachable states 
and then obtaining the equivalent minimized machine, we reach the finite state 
machine for the desired configuration. The finite state machine for configuration 
C is called MS [C]. 
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Figure 4.3 Finite state machine describing the beverage vending machine product 
line 

4.3 Modified test method 

The transition cover set and separating set are two basic sets used in the W test 
method. So, in order to change thi–s method for use in testing the software 
product line, we must change the algorithms for constructing these two sets. We 
will address this issue in the next two sections. In the next section, we first 
explain the algorithm for obtaining the separator set to be used in the test method. 
Then we prove the correctness of the proposed algorithm and finally apply it on 
the example mentioned in the previous section. 

4.3.1 Set of separating sequence 

In the process of obtaining the finite state machine of a product, some transitions 
are removed from the original machine. Sequences from the separating set W that 
contain at least one of these transitions are also removed from the set. The 
remaining sequences must form a separating set for the finite state machine of the 
product. For this purpose, the main separating set, which is obtained from the 
characterization machine of the entire product line, should be such that it has a 
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separating sequence for each of the two separate states in every possible 
configuration. The set W is formally defined below. Before that, two other 
concepts that are used in this chapter are also defined. 

Definition 4.2 The set F for a sequence x contains the features that label exactly 
all the transitions of the sequence x. 

Definition 4.3 If A is a set of sequences and C is a configuration, then the set A\C 
is obtained by removing the sequences of the set A that contain transitions labeled 
with features not present in C. In other words,  

A \ C = {x ∈ A | Fx ⊆ C} 

Definition 4.4 The set W is a separating set for Ms if, for every valid 
configuration C, W \ C is a separating set for MS [C]. 

For two distinct states s and t in S all the separating sequences with possible 
different feature sets must be included in W. Consequently, for every valid 
configuration C, and for any two distinct states s and t in SMS[C] (the set of 
machine states MS [C]), there will be at least one separating sequence in W \ C. If 
in the process of constructing W \ C all the separating sequences for s and t are 
removed and there is no separating sequence for these two states in W \ C, then 
these states are equivalent, and in the minimization stage of the machine 
constructing process MS [C] must be merged into one state.  

As we know mandatory features are part of any valid configuration. 
Therefore, a separating sequence of two states s and t, labeled only with 
mandatory features is sufficient to distinguish between these two states in any 
configuration. To build the set W for MS we need to obtain the separating 
sequences for all pairs of distinct states in MS. Algorithm 4.1 obtains the set of the 
shortest separating sequences for two states s and t and returns it in the Sep set. 
This algorithm is an extension of the algorithm for obtaining the shortest 
separating sequence for two states presented and proved elsewhere [8]. 
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Algorithm 4.1 Function of constructing all separating sequences of two distinct 
states 
SSM (s, t: state): 

1. Partition the set of states i.e., SMS, into equivalence classes ρ 
2. Let Sep set equal to the empty set 
3. Find the smallest index i such that s and t belong to different blocks of ρi 
4. If i is equal to 1, add each a ∈ I for which it is λ (s, a) ≠ λ (t, a) to Sep 
5. Otherwise, for each a ∈ I where δ (s, a) and δ (t, a) belongs to different 

blocks of ρi−1, add a.SSM (δ (t, a), δ (s, a)) to Sep 
6. Return Sep as the result 

Example 4.1 We partition the set of states of the VM machine in Figure 4.3 in the 
manner described in Section 2. Each state in ρ1 is placed in a separate class. So, 
for distinct states, the smallest i index is equal to 1, and as a result, the shortest 
separating sequences are 1 in length. For s0 and s2 all inputs except (V, coin), (F, 
sodareq) and (C, cofreq) lead to the same error output. So, we have: 

SSVM (s0, s2) = {(V, coin), (F, sodareq), (C, cofreq)} 

Similarly we have 

SSVM (s2, s5) = {(C, cofreq), (T, plain), (N, cinnamon), (L, lemon)} 

By obtaining SSM (s, t) we can find the separating sequences of these two 
states that should be included in the W set. We call the set of these separating 
sequences, which must be in W, Qs,t. The process of constructing Qs,t is that we 
first set it equal to SSM (s, t) and then remove the unnecessary and redundant 
sequences from it. The formal definition of the set Qs,t and the method of 
obtaining it are given below. 

Definition 4.5 The set Qs,t for two states s, t ∈ S is a set of input sequences such 
that for every valid configuration C such that s, t ∈ S (MS [C]), there exists an 
input sequence x ∈ Qs,t such that λ (s, x) ≠ λ (t, x) and Fx ⊆ C. 

As mentioned earlier, if the two states s and t have a separating sequence with 
all transitions labeled with mandatory features, the presence of this separating 
sequence in W is sufficient to distinguish these two states in any configuration. 



43 
 

This case is handled in the first step of the Qs,t construction algorithm below. If 
there are multiple separating sequences labeled with the same feature set in SSM 
(s, t), only one of them is enough to be included in Qs,t. Which of these sequences 
is better to include depends on the conditions explained below. The cost of the 
test depends on the number of test cases and their length. Therefore, in choosing 
separating sequences we should keep in mind the number and length of separating 
sequences in the W set should be minimized.  

The set of separating sequences for pairs of states can have commonality. So 
in the construction of Qs,t, when choosing between separating sequences x and y 
with the same features we choose the sequence that appears in the largest number 
of sets Q that have been computed up to that point. We thus try to minimize the 
number of members of the W set, which also affects the number of test cases. If 
the number of sets Q containing x and y are the same, the selection is made based 
on the length of the sequences. This means that the sequence with a shorter length 
remains in Q and causes the longer sequence to be removed. This way we try to 
keep the sum of the length of separating sequences in W to a minimum. In fact, 
the process of using the commonality of Q sets to select the desired separating 
sequence uses product commonality and similarities, which makes the test items 
reusable. Additionally the relation requires also needs to be considered. If the 
relation f1 requires f2 holds in a product line, then there is no valid configuration 
of this product line that contains f1 but does not contain f2. In other words, every 
valid configuration that contains f1 also contains f2. The requires relation can be 
used to reduce the number of separator sequences in the Q sets. Suppose that x 
and y are two separating sequences for s and t. We know that Fx and Fy are 
respectively the sets of features that the transitions of sequences x and y are 
labeled with. If any feature is present in Fy, or in Fx, or there is a feature in Fx that 
requires it, x can be removed from Qs,t.  This can be expressed formally as 
follows. 

∀ f1 ∈ Fy − Fx, ∃ f2 ∈ Fx     such that     f2 requires f1 → discard x from Qs,t 

By subtracting Fx from Fy, we discard features of y that are also in x and 
examine the remaining features. Establishing the above condition leads to the fact 
that in any configuration where the sequence x is present, sequence y is also 
present. So the presence of x in the set of separating sequences creates 
redundancy. It should be mentioned that, if x includes other features in addition to 
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the same features as y, and these features are in the requires relation with the 
features of y, then there is no problem in removing it. Nevertheless, the existence 
of x implies the existence of y. However, the opposite is not true. This means that 
if y has more features in addition to the same features as x or that are in the 
requires relation, then we cannot remove the sequence of x from Qs,t. Because 
sequence y does not exist in the configuration that does not contain these 
additional features, it should not cause the removal of x. All these points are taken 
into account in Algorithm 4.2.  

Consider two transitions tr1 and tr2 with the same origin state, labeled with 
features f and g, respectively. Suppose (tr1, tr2) ∈ Prio. So in any configuration C 
such that f, g ∈ C, the transition tr2 is removed from the configuration due to its 
lower priority. Therefore, in Algorithm 4.2, if we pass through the transition tr2 
by applying the sequence x to s or t, then x cannot cause the removal of another 
sequence, because it is not present in some configurations which also include Fx. 
Therefore, before deleting a sequence, we must always check if the sequence that 
caused it to be deleted has a lower priority (than another) If this is the case then 
we will prevent the removal of the sequence. There is one exception namely, 
when the sequence to be deleted also includes the same transition with low 
priority (i.e., tr2). In this case we can perform the removal. This condition must 
be also observed in Algorithm 4.3 which is used for the construction of the 
transition cover set.  

The HasLowerPriorityTransition function, which is used in Algorithms 4.2 
and 4.3 receives a state and a sequence and determines whether by applying that 
sequence to the given state the machine passes through a low priority transition.  
 
Algorithm 4.2 Constructing the set of required separating sequences for s and t 
Function GenerateQ (s, t: state) { 
    Let Qs,t = SSM (s, t) 
    For every separating sequence x ∈ Qs,t { 
        Let xLowPrio = HasLowerPriorityTransition (s, x) ∨ 
HasLowerPriorityTransition (t, x) 
        If Fx ⊆ MF ∧ ¬ xLowPrio, then let Qs,t = {x} and return Qs,t 
        If ∃y ∈ Qs,t such that Fx = Fy, then { 
            Let yLowPrio = HasLowerPriorityTransition (s, y) ∨ 
HasLowerPriorityTransition (t, y) 
            If |{Qs′,t′ | s′, t′ ∈ S ∧ y ∈ Qs′,t′}| > |{Qs′,t′ | s′, t′ ∈ S ∧ x ∈ Qs′,t′}| then 
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                If ¬ yLowPrio then Let Qs,t = Qs,t − {x} 
                Else If ¬ xLowPrio then Let Qs,t = Qs,t − {y} 
            If |{Qs′,t′ | s′, t′ ∈ S ∧ x ∈ Qs′,t′}| > |{Qs′,t′ | s′, t′ ∈ S ∧ y ∈ Qs′,t′}| then 
                If ¬ xLowPrio then Let Qs,t = Qs,t − {y} 
                Else If ¬ yLowPrio then Let Qs,t = Qs,t − {x} 
        } (end of If) 
        If ∃y ∈ Qs,t such that ∀f ∈ Fy − Fx, ∃f′ ∈ Fx such that f′ requires f then { 
            Let yLowPrio = HasLowerPriorityTransition (s, y) ∨ 
HasLowerPriorityTransition (t, y) 
            If ¬ yLowPrio then Let Qs,t = Qs,t − {x} 
        } (end of If) 
    } (end of For) 
    return Qs,t 
} 

For a better understanding of the above algorithm we use it on the beverage 
vending machine product line. 

Example 4.2 Consider the two states s2 and s5 of the machine from Figure 4.3. In 
Example 4.1 we obtained the set of all the shortest separating sequences of these 
two states. 

SSVM (s2, s5) = {(C, cofreq), (T, plain), (N, cinnamon), (L, lemon)} 

Since N requires T and L requires T, according to Algorithm 4.2 (N, 
cinnamon) and (L, lemon) are removed from the set of necessary separating 
sequences, and as a result, we have:  

Qs2,s5 = {(C, cofreq), (T, plain)} 

For s0 and s2 on the other hand, we had SSM (s0, s2) = {(V, coin), (F, 
sodareq), (C, cofreq)}. In order to obtain Qs0,s2 we note that the output transition 
from s0 with input (V, coin) has a lower priority than the transition with input (F, 
sodareq), and therefore, the separating sequence (V, coin), although labeled with 
the mandatory feature, cannot cause the removal of another sequence, so we have: 

Qs0,s2 = {(V, coin), (F, sodareq), (C, cofreq)} 
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Input (V, sodareq) has an output other than error only when exiting state s1, 
s0 (V, sodareq) is a separating sequence for s1 from any other state. Furthermore, 
since F (V, sodareq) = {V}, we have:  

∀ t ∈ SVM (t ≠ s1) · Qs1,t = {(V, sodareq)} 

Now we have to check whether Qs,t constructed by Algorithm 4.2 conforms 
to the Definition 4.5. This is accomplished by the following lemma. 

Lemma 4.1 For each valid configuration in the software product line, and for any 
distinct states s and t in the finite state machine describing that configuration, 
there is an input sequence in Qs,t as computed by Algorithm 4.2 that is a 
separating sequence for those two states, and all its features exist in the 
configuration. We formally have: 

∀C ∈ V C, ∀s,t ∈ Min (Ms[C]) ⇒ ∃x ∈ Qs,t · x ∈ SSM (s, t) ∧ Fx ⊆ C 

Proof. The proof is by contradiction. Suppose there is a configuration for which 
there is no sequences in Qs,t that has the two condition x ∈ SSM(s, t) and Fx ⊆ C. 
That is, 

∃C ∈ V C, ∃s, t ∈ Min (Ms[C])  ∄ x ∈ Qs,t · x ∈ SSM(s, t) ∧ Fx ⊆ C 

We know that both s and t in the finite state machine of any configuration C 
have a separating sequence with its features available in that configuration 
(otherwise the two states would be equivalent). This means that 

∀C ∈ V C, ∀s, t ∈ Min (Ms[C]) ⇒ ∃x ∈ SSM (s, t) · Fx ⊆ C 

From here, several situations arise: 
• If the features that the transitions of sequence x are labeled with are all 

mandatory features, and the sequence x starting from s and t, does not 
include transitions with low priority, then in Algorithm 4.2 we will have 
Qs,t = {x}. On the other hand, for every valid configuration C we have MF 
⊆ C. So Fx ⊆ C, and as a result, a contradiction. 

• If there is a sequence y ∈ Qs,t with Fx = Fy, the sequence x in Algorithm 
4.2 can be removed from Qs,t. We know that Fx ⊆ C and Fx = Fy, therefore 
we have Fy ⊆ C. So there is a sequence y in Qs,t whose feature set is a 
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subset of C. Also, since Qs,t = SSM (s, t) is placed first, then all the existing 
sequences in Qs,t are separating sequences of s and t. As a result, the 
assumption is once again violated. 

• Sequence x may be omitted in Algorithm 4.2, if there is sequence y in Qs,t 
such that for every f in Fy − Fx, there is an f′ in Fx that the relation f′ 
requires f is established. According to the definition of this relation, if f′ is 
in C, f will also be a member of C. Therefore the features of y that are not 
in Fx are also members of C. So, all the features of sequence y are in 
configuration C and as a result, again a contradiction.                                ■ 

In the last two cases in the proof we determined that even if x is removed 
from Qs,t, there is still a sequence in it that matches the intended conditions. By 
obtaining the set Q for all the distinct states in the F2SM describing the software 
product line, we can construct the set of separating sequences W for each 
configuration. The algorithm to obtain this set is given in Section 4.3.3 
(Algorithm 4.6). In the next section we will discuss how to construct the transition 
cover set. 

4.3.2 Transition cover set 

In this section we obtain the transition cover set (abbreviated P) for the model 
describing the entire product line, MS. Having P, one can obtain the transition 
cover set for each product. As mentioned before, for each s ∈ S and each a ∈ I in 
MS there is a transition from s with input symbol a. Therefore, Definition 2.4 of 
Chapter 2 can be rewritten as follows: The set of input sequences P is a transition 

cover set for the finite state machine M, if for each transition s 
𝑎𝑎
→  there exist 

sequences x, y ∈ P such that x = y.a and δ (s0, y) = s. 
We know that the transition cover set is closed under prefix. In the following 

we can see that the proposed algorithm for constructing the set P preserves this 
property. The formal definition of the transition cover set for the product line is 
given below. 

Definition 4.6 The set of input sequences P is a transition cover set for MS if, for 
every valid configuration C, P \ C is a transition cover set for the finite state 
machine describing C, i.e., MS [C]. 

To obtain the set P we need to find the necessary sequences to cover each 
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transition. For each configuration and for each transition in which that 
configuration appears we want to have at least one sequence in P that covers that 
transition (that is, starts from the initial state and ends with that transition). In 
order to build these sequences we first obtain sequences with different sets of 
features that end at the origin of each transition. Algorithm 4.3 describes the 
method of obtaining these sequences for each state. After executing this 
algorithm, for each state S we have a set needPath(S) of sequences with different 
features, each of which constituting a path from the initial state to state S. 

In order for the prefix property to be established in the set P, it is necessary 
that the union of these sets on all states of the machine have the prefix property. 
That is, if the sequence x is in needPath(s), then every prefix of x must be in 
∪𝑡𝑡∈𝑠𝑠 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ(𝑡𝑡). In order to establish this property we traverse the finite state 
machine in a breadth-first order. 

Algorithm 4.3 Building needPath for all finite state machine states 
Function GenerateneedPaths(){ 
let L = 0 ∧ ReachedStates = ∅ ∧ needPath(s0) = {ϵ} 
do the steps below, until needPath(s) does not change for any s: 
    if L equals 0, then for each outgoing transition from s0: tr do 
        if the output symbol of tr not equals error then { 
            let ns = destination state of tr 
            add transition symbol of tr to needPath(ns) 
            add ns to ReachedStates 
        } 
    if L is greater than 0, then 
        for each state st, in ReachedStates and for each outgoing transition from st: tr   
            let tsym = transition symbol of tr 
            let ns = destination state of tr 
            if the output symbol of tr not equals error then 
                for each path p of length L in needPath(st), do 
                    if p has not passed the state ns, then add p.tsym to needPath(ns) 
    } 
    for each state s in ReachedStates 
        let selectedPath(s) = ApplyConstraints(needPath(s)) 
        for each path p in needPath(s) − selectedPath(s) do { 
    remove p from needPath(s) 
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    for each path p′ in needPath(t) · (t ≠ s) do 
        if p is a prefix of p′ then remove p′ from needPath(t) 
    } 
} 
Function ApplyConstraints(needPath(s)) { 
    Let selectedPath(st) = ∅ 
    Foreach path p in needPath(st) do 
        If Fp ⊆ MF ∧ ¬ HasLowerPriorityTransition(s0, p) then 
            Let selectedPath(st) = {p} and break the loop 
        If ∃p′ ∈ needPath(st) such that Fp = Fp′ then { 
            If |p| ≤ |p′| then 
                If ¬ HasLowerPriorityTransition(s0, p) then add p to selectedPath(st) 
                Else If ¬ HasLowerPriorityTransition(s0, p′) then add p′ to selectedPath(s  
                    Else Let selectedPath(st) = selectedPath(st) ∪ {p, p′} 
            Else 
                If ¬ HasLowerPriorityTransition(s0, p′) then add p′ to selectedPath(st) 
                Else If ¬ HasLowerPriorityTransition(s0, p) then add p to selectedPath(st) 
                    Else Let selectedPath(st) = selectedPath(st) ∪ {p, p′} 
        } 
        If ∃p′ ∈ needPath(st) such that ∀f1 ∈ Fp′ − Fp, ∃f2 ∈ Fp such that f2 requires f  
        ∧ ¬ HasLowerPriorityTransition(s0, p′) then add p′ to selectedPath(st) 
    return selectedPath(st) 
} 

Variable L indicates the level to which the machine has been traversed. To 
build the needPath sets, we start from level zero that is, state s0, and for each 

output edge from this state s0 
(𝑓𝑓,𝑎𝑎)
�⎯� t that does not have an output error 

(𝑓𝑓,𝑎𝑎)
�⎯� we add 

(f, a) to needPath(t). We also add state t to the set ReachedStates.  In fact, at each 
stage, we add new seen states to this set. Then we increment L and go to the next 
level. Now let's assume that we have proceed to level k that is, L = k. For every 

state s ∈ ReachedStates and its every output transition s 
(𝑓𝑓,𝑎𝑎)
�⎯� t that has no error 

output 
(𝑓𝑓,𝑎𝑎)
�⎯� we consider every path p in needPath(s). If the destination state of this 

route is at level k of the machine (or in other words, p has passed k transition) and 
also P has not passed state t, we add the path p.(f, a) to the paths necessary to 
reach t, i.e. needPath(t). In fact, each time we add the paths of length k + 1 that do 
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not have loops and are the continuation of the paths we found on the previous 
level, corresponding to their destination. This way we preserve the prefix property 
in the union of the needPath sets. Additionally, if ReachedStates does not contain 
state t, we include this state in that set as well. At the end of the loop, after the 
needPath sets have been updated, they are also checked by the ApplyConstraints 
function in a way similar to the three conditions mentioned in Algorithm 4.2, and 
unnecessary paths are removed. It should be noted that by deleting a path, all the 
paths in each needPath that are the suffix of this path should also be deleted. The 
algorithm terminates as soon as no needPath set is updated. In other words, the 
execution of the loop continues as long as needPath(s) changes for at least one s ∈ 
S.  

Recall that the ApplyConstraints function removes unnecessary paths and 
returns the rest in the selectedPath set. When choosing between two paths p and 
p′ with the same set of attributes in needPath(s), we use the length criterion. That 
is, if the path p is shorter and does not include any transition with low priority, it 
can cause the deletion of p′ and so only p is added to the set of selectedPath(s).  

Lemma 4.2 For each valid configuration in the software product line, and for 
each state s in the finite state machine describing that configuration, there is a 
path in needPath(s) that contains all the feature of the configuration. Formally, 

∀C ∈ VC, ∀s ∈ Min (Ms[C]) ⇒ ∃p ∈ needPath(s) · Fp ⊆ C 

Proof. The proof is once again by contradiction: Suppose there is a configuration 
for which there is no path in needPath(s) that satisfies condition Fp ⊆ C: 

∃C ∈ VC, ∃s ∈ Min (Ms[C]) ∄p ∈ needPath(s) · Fp ⊆ C 

We then are in one of the following situations: 
• If all the transitions of the path p are labeled with mandatory features and 

also the path p starting from the initial state does not include transitions 
with low priority, then in Algorithm 4.3 we will have needPath(s) = {p}. 
On the other hand, for every valid configuration C we have MF ⊆ C and 
so Fp ⊆ C. The assumption is thus violated. 

• If a path p′ of length shorter than p and Fp = Fp′ in needPath(s) exists and 
p′ does not include a low-priority transition, then p is deleted based on the 
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existence of p′. But the presence of p′ with Fp′ ⊆ C in needPath(s) violates 
the assumption. 

• Path p may be omitted in Algorithm 4.3, if there exists a path p′ in 
needPath(s) such that for every f′ in Fp′ − Fp, there is an f in Fp such that 
the relation f requires f′ holds. According to this relation, if f is in C, f′ will 
also be a member of C. Therefore the features of p′ that are not in Fp are 
also members of C. That is, all features of path p′ are in configuration C 
and as a result the assumption is violated.                                                   ■ 

Example 4.3 We want to construct needPath(s) for each state s ∈ SVM. At the 
beginning of Algorithm 4.3, the value of variable L is zero, and with one 
execution of the loop, we have: 

needPath(s1) = {(V, coin)}, needPath(s6) = {(F, sodareq)} 

In the next execution of the loop, (V, coin).(V, sodareq) is added to 
needPath(s6), and although both transitions of this sequence are labeled with the 
mandatory feature V, it cannot eliminate the sequence (F, sodareq), because it 

includes the transition with low priority s0 
(𝑉𝑉,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)
�⎯⎯⎯⎯� s1. We also have: 

needPath(s2) = {(V, coin).(C, coin)} , needPath(s5) = {(V, coin).(T, teareq)} 

At L = 2 in the execution of the function ApplyConstraints the sequences (V, 
coin).(T, teareq).(N, cinnamon) and (V, coin).(T, teareq).(L, lemon), which were 
added to needPath(s4) at the beginning of the loop are removed due to the 
existence of the sequence (V, coin).(T, teareq).(T, plain) and the relations N 
requires T and L requires T. It is worth noting that because all three sequences 

contain the low-priority transition s0 
(𝑉𝑉,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)
�⎯⎯⎯⎯� s1, deletion is possible.  

Finally, at L=5, the needPath sets are completed and fixed for all states and 
the algorithm terminates.  The sets needPath for states s1, s2 and s5 remain 
unchanged from earlier. For the other states we have: 

needPath(s3) = {(V, coin).(C, coin).(C, cofreq)} 
needPath(s4) = {(V, coin).(C, coin).(C, cofreq).(M, mreq), (V, coin).(T, teareq).(T, 

plain)} 
needPath(s6) = {(V, coin).(V, sodareq), (F, sodareq)} 
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After executing Algorithm 4.3 and constructing the sets needPath(s) for each 
s ∈ S we can obtain the transition cover set for the finite state machine MS that 
describes the specifications of the product line. Algorithm 4.4 shows how to build 
this set. 

Algorithm 4.4 Building the transition cover set for the product line specification 
machine 
Function GeneratePSet() { 
    Let PSet = ∅ 
    For each state s ∈ S do 
        For each path p ∈ needPath(s) do 
            If ∃p′ ∈ needPath(s) such that Fp′ ⊆ Fp then remove p from needPath(s) 

    For each transition tr : s 
(𝑓𝑓,𝑎𝑎)
�⎯� t in MS do 

        If the output symbol of tr not equals error then 
            Add needPath(s).(f, a) to PSet 
Add the empty string ϵ, to PSet 
} 

At the beginning of the algorithm for each state s the paths inside needPath(s) 
are checked and if possible a number of unnecessary paths are removed. Suppose 
the paths p and p′ are two paths from s0 to s, which were placed in needPath(s) by 
Algorithm 4.3. Path p is considered unnecessary and can be omitted if Fp′ ⊆ Fp. 
Indeed, in this case for every configuration C where the path p is in MS [C], p′ will 
also exist in that machine. We know that Fp′ ⊆ Fp, so whenever Fp ⊆ C then it 
will also be the case that Fp′ ⊆ C. Overall, the membership of p in needPath(s) is 
not necessary. We must note that the reverse is not true. That is, there can be a 
configuration whose machine contains p′ but does not contain p. So, the presence 
of p′ in needPath(s) is required.  

After making the necessary changes in the needPath sets the transition cover 

set can be obtained. For each transition tr: s 
(𝑓𝑓,𝑎𝑎)
�⎯� t we add the necessary paths to 

reach s with the input symbol of the transition and add it to the transition cover 
set. In fact, needPath(s).(f, a) is the set of necessary paths, to cover the transition 
tr in the entire product line. Since for every valid configuration C of the product 
line there is at least one path to s in needPath(s) that appears in the specification 
machine of this configuration, then we can be sure that in the set P for every 
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configuration and for each transition there is at least one sequence that represents 
the path that covers that transition. 

Example 4.4 For the transition s6 
(𝑉𝑉,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)
�⎯⎯⎯⎯⎯� s0 and given needPath(s6), the 

sequences (F, sodareq).(V, ready) and (V, coin).(V, sodareq).(V, ready) are added 
to the set P and cover this transition. Similarly, the necessary sequences to cover 

s4 
(𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)
�⎯⎯⎯⎯� s6 transition are:  

(V, coin).(C, coin).(C, cofreq).(M, mreq).(S, sreq)  and  (V, coin).(T, teareq).(T, 
plain).(S, sreq) 

Having the needPath sets from Example 4.3, we can also obtain the 
sequences needed to cover other transitions from the machine of Figure 4.3 and 
form the transition set for the beverage vending machine product line model. 

4.3.3 Testing the software product line 

Having a set of separating sequences and a set of transitions, it is now possible to 
test the software product line. We will reuse the obtained sets in the test of all 
products. We know that in order to create test sequences for each product we must 
have the sets of separating and transition cover sequences. We want to extract 
these sets from the sets of separating and transition cover sequences that we built 
for the entire product line. We denote the sets of separating and transition cover 
sequences for configuration C by W [C] and P [C], respectively. 

4.3.3.1 Extracting the transition cover set for a product 

Algorithm 4.5 extracts the transition cover set for each valid configuration of the 
product line from the set P that we constructed in Section 4.3.2. We defined a set 
named ConfigP and set it equal to P at the beginning. To obtain the transition 
cover set for configuration C we need to have the transitions in the configuration. 
We define a set called Transitions, which is initially equal to the set of all 
transitions in the machine describing the entire product line i.e., Ms, and then we 
remove transitions from it during several steps. As we saw earlier, a priority may 
be defined between transitions that exit the same state but are labeled with 
different attributes. Depending on the configuration features, transitions with 
lower priority may be omitted. If the features tagged with two lower and higher 



54 
 

priority transitions are both present in C, the lower priority transition will not 
appear in the configuration, so, we remove these transitions from the Transitions 
set. Also, sequences that contain these transitions should not appear in the 
transition cover set, so we remove them from ConfigP. 

The next step in arriving at the transition cover set for configuration C is to 
discard sequences from the set P that contain at least one transition labeled with a 
feature other than the features of C; these sequences should be removed from 
ConfigP. We then remove the transitions in Transitions which are not covered by 
any sequence in ConfigP. The remaining transitions in Transitions form the set of 
configuration transitions C.  

We constructed the set P for the entire product line in such a way that for 
each transition it contains sequences that cover that transition in different 
configurations (which contain that transition). So for each transition there may be 
more than one sequence in P. Also, due to the existence of commonality between 
configurations, in extracting the transition cover set for a configuration, there may 
also be transitions that are covered by more than one sequence in ConfigP. We are 
ready to remove these extra sequences. As mentioned earlier, the shorter the 
length of the test sequences, the lower the cost of the test. So we use the length 
criterion to remove the extra sequences. Algorithm 2.2 in Chapter 2, which builds 
the transition set in the W test method, also uses the idea of the shortest length. 
This algorithm constructs the test tree by traversing breadth-first the finite state 
machine. Then it obtains the machine transition set by extracting partial paths 
from this tree. Due to the breadth-first traversal, the sequence chosen to cover 
each transition is the shortest possible sequence. Here, we also choose the shortest 
sequence among the sequences covering a transition. We also choose the 
sequence with shorter length among the sequences covering a transition. The loop 
at the end of Algorithm 4.5 is responsible for this task. After executing this 
algorithm, P[C] will contain the necessary sequences to cover the configuration 
transitions of C. 

Algorithm 4.5 Extraction of transition cover set for configuration C 
Function DeriveConfigPSet() { 
    Let ConfigP = P 
    Let Transitions = the set of all transitions in Ms 

    Foreach pair of transitions (s 
(𝑓𝑓,𝑎𝑎)
�⎯� t, s 

(𝑔𝑔,𝑏𝑏)
�⎯� t′) ∈ Prio do 

        If f ∈ C and g ∈ C then { 
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            Remove sequences containing the transition s 
(𝑔𝑔,𝑏𝑏)
�⎯� t′ from ConfigP 

            Remove s 
(𝑔𝑔,𝑏𝑏)
�⎯� t′ from Transitions 

        } 
 
    Foreach sequence sc in ConfigP do 

        If sc contains a transition tr : s 
(𝑓𝑓,𝑎𝑎)
�⎯� t such that f ∉ C then 

            Remove sc from ConfigP 
 

    Foreach transition (tr : s 
(𝑓𝑓,𝑎𝑎)
�⎯� t) ∈ Transitions do 

        If ∄sc ∈ ConfigP such that sc = x.(f, a) ∧ δ(s0, x) = s then 
            Remove tr from Transitions 
    Let ConfigTrans = Transitions 
 
    Let P[C] = ∅ 
    While Transitions ≠ ∅ do { 
        Let tr be a transition from Transitions 
        Let sc ∈ ConfigP be the shortest sequence, covering tr  
        Remove all of the transitions of sc from Transitions 
        Add all of the prefixes of sc to P[C] 
    } 
} 

Example 4.5 In the implementation of Algorithm 4.5 for a configuration of the 
beverage vending machine product line with features V, C, T, M, and S the 

transition s4 
(𝑆𝑆,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)
�⎯⎯⎯⎯� s6 is not removed from the set of transitions. Among the 

covering sequences of this transition obtained in Example 4.4, the sequence with a 
shorter length, namely (V, coin).(T, teareq).(T, plain).(S, sreq), is selected and 
placed in the covering set of this configuration along with its prefixes. 

Before arriving at the correct idea of choosing the sequence to cover each 
transition and removing redundant sequences (in the last loop of the algorithm), 
we tried other ideas that were not successful because they did not keep the total 
length of test sequences minimal. For instance, the two criteria by which 
sequences were selected to be included in P [C] could have been (a) the greatest 
commonality between the transitions of the sequence and the uncovered 
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transitions, and (b) the greatest commonality between the set of prefixes of the 
sequence and the set of P [C] that has been built up to that point. We know that by 
selecting any sequence from ConfigP and adding it to P[C] its prefixes should 
also be added to this set. The second criterion aims to add fewer sequences to the 
coverage set each time. In fact, by using the combination of these two criteria, we 
tried to choose a sequence that includes a larger number of uncovered sequences 
and also minimizes the increases in the number of sequences inside P [C]. For this 
purpose, we used the product of these two criteria as the selection factor for the 
next sequence. However, the problem of this approach comes from the fact that 
the second criterion contradicts the first criterion. When we want to select a 
sequence that has more prefixes already in P [C], then most transitions in the 
sequence have already been covered. 

4.3.3.2 Extracting the set of separating sequences for a product 

After obtaining the transition cover set for the configuration, we proceed to 
extract the set of separating sequences or W [C]. We know that in the process of 
building a finite state machine for describing the characteristics of a product, 
some transitions are omitted and the resulting machine may no longer be minimal. 
More precisely, a number of states may no longer be accessible from the initial 
state, and some states may become equivalent to each other. In order to construct 
W [C], we must first determine all the states accessible from the starting state s0. 
To obtain these states we use the transitions C from the ConfigTrans set. Recall 
that this set is initialized in Algorithm 4.5. The source state of each of the 
transitions in ConfigTrans is an accessible state out of s0. If the transition 
destination state is not any transition source state, it will be equivalent to the ser 
state. Reachable states are placed in a set called ReachableStates.  

To recognize the equivalence of two states we use the set of their separating 
sequences. Two states s, t ∈ S are equivalent in a configuration C if there is no 
separating sequence in Qs,t whose property set is a subset of C. In other words, 
these two states do not have a separating sequence in the description machine of 
the specification C, so they are equivalent. We keep in the ReachableStates set 
only one (arbitrary) representative of each equivalence class thus obtained. 

First, we set W[C] to ∅. Then, for states s, t ∈ ReachableStates we select the 
separating sequence x so that Fx ⊆ C from Qs,t and add it to W[C]. We must note 
that there is a possibility of intersection between separating sets. As a result, there 
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may be s′, t′ ∈ ReachableStates such that x ∈ Qs′,t′. Therefore, there is no need to 
further examine these pairs of states to choose the separating sequence. Algorithm 
4.6 below shows the process of constructing the set W[C]. 

Algorith 4.6 Extracting the set of separating sequences for configuration C 
Function GenerateConfigW() { 
    Let ReachableStates = ∅ 

    For each transition (tr : s 
(𝑓𝑓,𝑎𝑎)
�⎯� t) ∈ ConfigTrans do 

        Let ReachableStates = ReachableStates ∪ {s} 
    For each pair of states s, t ∈ ReachableStates do 
        If ∄x ∈ Qs,t such that Fx ⊆ C then 
            Let ReachableStates = ReachableStates − {s} 
 
    Let W[C] = ∅ 
    Let markedPairs = ∅ 
    For each pair of states s, t ∈ ReachableStates do 
        If (s, t) ∉ markedPairs then { 
            W[C] = W[C] ∪ {x} · x ∈ Qs,t ∧ Fx ⊆ C 
            Let markedPairs = markedPairs ∪ {(s, t)} 
            If x ∈ Qs′,t′ · s′, t′ ∈ ReachableStates then 
                Let markedPairs = markedPairs ∪ {(s′, t′)} 
        } 
        For each state s ∈ ReachableStates do 
                If ∄x ∈ W[C] such that the output sequence λ (s, x) contains no error, 
then 
                    Let W[C] = W[C] ∪ {(f, a)} such that (f, a) ∈ I and λ (s, (f, a)) ≠ error 
} 

It is possible that all separating sequences chosen to distinguish state s from 
other states produce output sequence error. In this case, s cannot be distinguished 
from ser, and it is necessary to add a separating sequence to W[C] to distinguish 
these two states. For this purpose it is enough to choose a sequence which consists 
of only one output transition from state s which has no error output. This review 
and, if necessary, applying the required changes, is done at the end of Algorithm 
4.6. 
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Example 4.6 Consider configuration C = {V, F} of the beverage vending 
machine product line. Algorithm 4.2 will determine that that Qs0,s6 = {(V, ready)}. 
Now we execute Algorithm 4.6. According to the transitions of this configuration, 
s0 and s6 are known as accessible states from the initial state. Then (V, ready) is 
placed in W[C]. In the last loop of the algorithm, in order to distinguish s0 from 
ser, the sequence (F, sodareq) is also added to W[C]. 
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Chapter 5 

Evaluation  

We will now compare our test method described in the previous chapter with the 
original test method that is, the W method. For this purpose, we implemented both 
methods in Java and conducted experiments to evaluate the proposed method. 

5.1 Creating behavioral models of production lines 

To compare the original and the new test methods, we first produced a number of 
F2SM as models of product lines. The input parameters for the generator include 
the number of states, the number of input and output symbols, the initial number 
of transitions and the number of features. The result of running the program is a 
file that stores the generated machine information in text form. According to the 
initial number of transitions, we randomly select one source state and one 
destination state each time. We randomly select the input and output symbols as 
well as the feature that the transition is labeled with. As mentioned earlier, the 
resulting finite state machine F2SM must be deterministic. We also know that the 
transition input consists of a feature along with an input symbol. Thus, when 
choosing the feature and input symbol for a transition we must pay attention that 
there is no output transition from intended source state with that feature and input 
symbol. For this purpose, it is necessary to add it to the list of available transitions 
every time a transition is added to the machine, so that we can avoid 
nondeterminism. It should be mentioned that if two transitions with the same 
input symbol and different characteristics are generated for the same state, a 
priority must be defined between those two transitions, again to avoid 
nondeterminism. One of the factors in the evaluation of some results is the 
number of transitions labeled with mandatory features. For this reason, the 
possibility of determining the number of these transitions has been provided in the 
product line model building program. It is also possible to determine the 
maximum number of priorities defined between pairs of transitions. 
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5.2 Validation of the model 

After creating the F2SM machine according to the above description we need to 
check whether the machine meets the required conditions for testing (as 
mentioned in Section 2). If this is not the case, we modify the machine. First, all 
states should be reachable from the initial state. By performing a breadth-first 
traversal on the machine we can find the unreachable states. For each such a state 
we create a path of arbitrary length from the initial state to that state. Another 
requirement is that the machine must be minimal. To check for minimality we 
first create the ρ0, ρ1, ... sets, as described in Section 2.  If the number of 
equivalence classes thus obtained is equal to the number of machine states then all 
classes are singletons and thus the machine is minimal. Otherwise, for each two 
states in the same class we must add two transitions with different outputs to the 
machine, so that their origin is the two states mentioned and their destination is 
two states of different classes. As mentioned earlier, when adding a new 
transition, we must pay attention to keep the machine deterministic. We now have 
a minimal and deterministic finite state machine. 

Finally, by determining the required features and defining requirement and 
exclusion relations between some features we obtain the model of a hypothetical 
production line. We know that there is an implicit relation between each feature of 
a child and its parent. In order to apply this concept of the feature graph, in the 
implementation of the methods, it is necessary to put each pair of features of the 
child and the parent in the requirement relationship. Obviously this is not 
necessary in cases where the parent feature is identical to the root feature, since 
the root feature is present in all products. By having a set of features, their types, 
and the relationships between them, we can easily obtain the set of valid 
configurations. 

5.3 Implementation of test methods 

Now that we generated the production line model, it is time to apply our test 
method. To create the separating sets we first implement Algorithm 4.1 presented 
in Section 4, which obtains all separating sequences of two separate states. Then 
we implement Algorithm 4.2, which determines the set of separating sequences 
needed for all pairs of distinct states. We execute the implemented algorithm on 
the finite state machine created earlier. Then, for each valid configuration we 
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execute Algorithm 4.6 and obtain the set of separating sequences for that 
configuration. 

We implement Algorithms 4.3 and 4.4 to produce the transition cover set for 
the entire production line. By executing these algorithms on the machine 
describing the entire production line we obtain a set from which the transition 
cover set for each valid configuration can be extracted. For this purpose we 
implement Algorithm 4.5 and execute it for each configuration. With the 
transition cover sets and separating sequences the set of test sequences for each 
configuration can be obtained by concatenating the two sets above. 

To apply the original method, i.e., the W test method to the software 
production line, we need to implement this method separately for each product in 
the production line. First, we need to obtain the model describing the specification 
of each product from the model of the whole production line. To achieve the finite 
state machine of a product we remove those transitions from the finite state 
machine of the product line that are labeled with features not present in that 
product. We also remove transitions with lower priority Removing these 
transitions may make some states unreachable from the initial state. In this case, 
with a breadth-first traversal we can identify reachable states and thus remove the 
remaining states.  We then compute the equivalence classes of the states (as in 
Section 2) and merge all the members in each class. 

To implement the W test method, we need to generate the transition cover 
sets and the separating sequences. Algorithm 2.2 should be implemented first to 
obtain the transition cover set. Then, by extracting partial paths from the test tree 
we form the transition set. Using the separating sequences and the transition cover 
sequences we obtain the set of test sequences for the product. 

5.4 Evaluation of the test method 

To evaluate our test method we compare this method with the original method. 
For this purpose, we created several F2SM, each describing a hypothetical 
production line in the manner described above. Then, we applied the proposed test 
method and the W method to each and obtained the test sequences for each 
configuration of production line. We considered the improvement percentage of 
the total length of the test sequences of all the products of each product line, as 
well as the extraction time of these sequences as comparison criteria of the two 
methods. Therefore, we considered the above two criteria in each of the two test 
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methods for each model of the production line. To make the results more accurate 
we defined several F2SM with constant specification factors and calculated the 
average criteria. We considered the number of states, the number of input and 
output symbols, and the number of features as constant factors. Other 
characteristics are different for each machine, including the total number of 
transitions, the number of transitions labeled with mandatory features, the number 
of pairs of features in a requirement relationship and the number of defined 
priorities. Between 20 and 30 machines are defined in each category.  Table 5.1 
shows the results of applying the two test methods to the machines of each 
category as an average.  

Table 5.1 Comparison of two test methods with the average percentage 
improvement of the total length of test sequences and test time. 

Number of 
states 

Number of 
features 

Average percentage of 
total length 

improvement 

Average percentage of 
time improvement 

20 10 -2.1% 27.5% 
25 12 -1.25% 44.05% 
30 15 -2.7% 47.93% 
40 17 2.25% 52.17% 
50 20 2.5% 61.3% 

We can see that the average percentage of improvement in the total length of 
the test sequences in each category, both negative and positive, is very small. This 
indicates that the test sequences change very little in the proposed method 
compared to the original method. We know that in extracting the transition cover 
sets and separating sequences for a product in the proposed test method a number 
of sequences are removed from the P and W sets produced for the entire product 
line. The method of removal is such that it tries to keep the mentioned set 
minimal. However, the sets generated by the two test methods for the same 
product are not necessarily identical. This is because the transition cover sets and 
separating sequences for one machine are not unique. In Algorithm 2.2 the order 
in which the nodes are traversed from left to right or right to left results in a 
different test tree and thus different transition cover sets. From the way the W set 
is generated, as explained in Chapter 2, it can also be concluded that the order of 
selecting pairs of states to obtain their separating sequence, as well as the 
separating sequence chosen at each step for that state pair, affects the generated 
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set. We then conclude that the existence of small differences in the total length of 
the test sequences, is logical and a sign of the applicability of our test method. 

By comparing the average percentage of test sequence production time 
improvement in different categories in Table 5.1 we find that with the increase in 
the number of features or in other words the development of the product line, the 
percentage of time improvement also increases. With the increase in the number 
of features, the number of valid products also increases, and so the amount of 
repetitive work performed by the W method for the common parts of the products 
also increases. As a result, the difference in the production time of the test 
sequences in the two methods increases and a higher percentage of improvement 
is achieved. 

It should be noted that the percentage of time improvement for small 
production lines (modeled with F2SM with 10 states and 5 features) is negative (-
15% on average). When applying the proposed test method to larger production 
lines, the amount of work needed to extract test cases for each product is 
amortized over the number of products and improves the time compared to the 
original method. Since product lines in the industry and the real world are large, 
this issue is not considered a problem for the proposed test method and does not 
limit its applicability. 

5.4.1 The relationship between production line extension and percentage of 
test time improvement 

In order to show the effect of expanding the product line, or in other words 
increasing the number of features, in improving the test time we designed an 
experiment in which the classification of machines is done based on the number 
of features. In this experiment we have three categories of machines. In each 
category the number of states is equal to 25, the number of input and output 
symbols is equal to 30 and 40, respectively, and the number of transitions labeled 
with mandatory features is 20. There are 20 finite state machines in each category. 
The result of applying the two test methods to these machines is shown in Table 
5.2.  
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Table 5.2 Changing the comparison criteria with the increasing number of attributes. 

Number of features 
Average percentage of 
length improvement 

Average percentage of time 
improvement 

10 -0.6% 41% 
12 -2.6% 47% 
15 1.2% 54% 

We note that the percentage of test case generation time improvement 
increases with the increase in the number of features. It is worth noting that the 
change in the total length of test cases is still insignificant. This experiment shows 
the extensibility of our test method. 

5.4.2 The influence of the commonality of the products on the proposed test 
method 

The more commonality of products in the production line, the less work is 
required to obtain the test sequences of all products in our test method. This 
happens because our method uses the sequences in the core of the product line 
that are common to all products when selecting the sequences to form the P and 
W sets if possible., As a result, the comparisons and the next necessary actions to 
select the appropriate sequence are not performed, whereas the amount of product 
commonality has no impact in the test with the W method. We develop an 
experiment to illustrate this. We generate a number of F2SM in which the number 
of states, the number of input and output symbols, and the number of attributes 
are all the same namely, 25, 30, 40, and 12, respectively. In all machines, the 
number of pairs of features in the requirement relationship is equal to 2 and the 
maximum number of priorities defined between pairs of transitions is equal to 3. 
However, the number of transitions labeled with mandatory features can be 
different in each machine. For each machine, the ratio between the number of 
these transitions and the total number of transitions was calculated as a 
percentage. For machines with the same percentage of mandatory transitions, the 
average percentage of improvement in test case production time for all products is 
shown in the graph in Figure 5.1. The percentage of the number of transitions 
labeled with mandatory features actually indicates the amount of commonality of 
the products of the product line. As can be seen, increased commonality results in 
improved time to produce test cases using our method compared to the W method. 
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Figure 5.1 Increase in time improvement with the increasing commonality of product line 
products 

  



66 
 

Chapter 6 

Conclusions 

In this thesis we developed a model-based test for reactive software product lines. 
To perform a model-based test it is necessary to have a model of the expected 
behavior of the system under test. For this purpose we first introduced the concept 
of variability into the finite state machine and obtained an extension of this 
machine to model the system characteristics. To do that we labeled each transition 
of the machine with a feature of the product line. We defined priority between 
some transitions if necessary, according to the product line feature model. To 
obtain the finite state machine describing each product we removed the transitions 
from the machine describing the entire product line which are labeled with 
features not present in that product, as well as the transitions with low priority. As 
a consequence a number of states may become unavailable from the start state, so 
we removed them and obtained the equivalent minimum machine. 

We then modified the W test method, which is an efficient method for testing 
finite state machines, such that we can use it for software product line testing. For 
this purpose we provided new algorithms for building the sets of covering 
transitions and separating sequences. 

Existing model-based testing methods of the software product line have not 
used so far formal models to describe system specifications. The model-based 
testing presented in this thesis models the system specifications with formal 
methods. In the proposed test method all required test items are produced from the 
model describing the entire product line, and then they are customized to test each 
product. According to the results of the tests performed to evaluate our method 
the total length of the test cases of the product line is almost the same in both the 
proposed and original methods, but the production time of the test cases has been 
significantly reduced. Therefore, we conclude that the proposed test method is 
successful in reducing the cost of the test. We believe that this is due to the high 
degree in which our method reuses data used in constructing the tests. 
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6.1 Future work 

One of the other methods of testing finite state machines is the Wp method. This 
method is slightly different from W test method and it reduces the length of the 
test cases. We believe that the Wp test method can also be changed to test 
software product lines, and thus a yet more efficient test method can be obtained. 

The amount of researche on component-based software engineering is 
increasing. Shortening the development process and reducing costs are important 
goals in this field. One idea supporting this goal is to reuse components in 
different applications after they are developed and tested. A large reactive system 
can thus be obtained from the combination of smaller components. Given that 
each component is described by a finite state machine, a reactive system can be 
modeled as the combination of its components. Such a setup suggests that a 
theory of compositional model-based testing of finite state machines (that is, a 
method of obtaining global test cases based on the component tests) is worth 
exploring. 
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