

Model-Based Testing of Reactive Software Product Line
with Formal Methods

by

Ali Irannezhadi

A thesis submitted to the
Department of Computer Science

in conformity with the requirements for
the degree of Master of Science

Bishop’s University
Canada

January 2023

Copyright © Ali Irannezhadi, 2023

i

Abstract

With the increasing complexity of software in recent years model-based testing
has attracted more attention in industry and research, and the task of functional
test of the reactive software product lines is increasingly challenging and time
consuming. In model-based testing test cases are automatically generated to verify
the correctness of the implementation of a system according to the model that
describes the expected behavior of that system. In this research, a model-based
test method is presented for the functional test of the reactive software product
lines. In the proposed method, the system specification model is described by an
extension of the finite state machine model. In other words, a formal method is
presented to apply variability in finite state machines. Then, one of the efficient
test methods on finite state machines is selected and refined to be used for
production line testing. The conducted tests show that the obtained method
reduces the time required to generate the requisite test cases compared to the
original method.

ii

Acknowledgments

I would like to express my deepest gratitude to my supervisor Dr. Stefan D.
Bruda. This work would not have been possible without his support, patience, and
guidance.

I would like to thank the Computer Science department at Bishop’s
University for giving me the opportunity to pursue a Master’s degree.

I would like to thank all other professors in the Department of Computer
Science at Bishop’s University, especially Dr. Mohammed Ayoub Alaoui
Mhamdi from whom I learned a lot.

Above all I would like to express my very profound gratitude my wife,
Nasim, thanks for all your love, support, motivation and being always on my side.
But most of all, thank you for being my best friend. I owe you everything.

I would like to extend my sincere thanks to my parents. Thank you for your
love, support, and unwavering belief in me. Without you, I would not be the
person I am today.

iii

Contents

Abstract i
Acknowledgments ii
1 Introduction 1
 1.1 Motivation and Research Problem………………………….…. 2
 1.2 Summary of research achievements …………………….…….. 3
 1.3 Thesis structure……………….…………………………….…. 4
2 Preliminaries 5
 2.1 Model-based testing ……………………………..………….… 5
 2.2 Finite state machine …………………………….……….…….. 7
 2.2.1 Basic definition …………………….…………………. 8
 2.2.2 Equivalence of finite state machines …………….……. 10
 2.2.3 Conformance testing ……………..…….……………... 11
 2.2.4 The W test method …………………………...……….. 15
 2.3 Product line engineering ………………………………………. 18
 2.3.1 Creating the platform ……………………………...….. 19
 2.4 Software product line engineering ……………………………. 20
 2.4.1 Software product line engineering framework ………... 21
 2.4.2 Variability ………………………………………..……. 21
 2.4.3 Variability models ………………...…………………... 22
 2.4.3.1 Feature model …………………………………. 23
3 Previous work 26
 3.1 Modeling product line of reactive systems …………….……... 26
 3.2 Software product line testing ………………………………….. 29
 3.2.1 Automated and model-based test generation …………. 29
 3.2.2 SPL-based testing methods …………………………… 32
 3.3 Reactive system model-based testing …………………….…… 33
 3.4 Conclusions so far ………………………………………….…. 34
4 Proposed method 35
 4.1 Introduction ………………………………………………….... 35
 4.1.1 Running example ………….…………………………... 35
 4.2 Product line behavior modeling ………………………………. 37

iv

 4.3 Modified test method ………………………………………..... 40
 4.3.1 Set of separating sequence ……………………………. 40
 4.3.2 Transition cover set ………………………………….... 47
 4.3.3 Testing the software product line………...……………. 53
 4.3.3.1 Extracting the transition cover set for a product 53
 4.3.3.2 Extracting the set of separating sequences for a

 Product ……………………………………...…

56
5 Evaluation 59
 5.1 Creating behavioral models of production lines …...…………. 59
 5.2 Validation of the model ………………….……………………. 60
 5.3 Implementation of test methods ………………………………. 60
 5.4 Evaluation of the test method ………….….………................... 61
 5.4.1 The relationship between production line extension

 and percentage of test time improvement ….…...…...

63
 5.4.2 The influence of the commonality of the products on

 the proposed test method ……………………....…….

64
6 Conclusion 66
 6.1 Future work ……………………………………………….…... 67
Bibliography 68

v

List of Figures

2.1 Finite state machine for an example system …………………………... 10
2.2 Finite state machines describe the specification and implementation of

a system ……………………………..………………………...………..

17

2.3 A test tree for Ms machine ……………………….................................. 18
2.4 A sample feature model of mobile phones …………………….……..... 25
3.1 Model-based testing in single system development ………………..….. 30
3.2 Model-based testing in software product family engineering …………. 31
4.1 Feature model of the beverage vending machine product line ………... 36
4.2 Beverage vending machine modeled with finite state machines …...…. 37
4.3 Finite state machine describing the beverage vending machine product

line …………….…………………...……………………………...……

40

5.1 Increase in time improvement with the increasing commonality of
product line products ……………..…………...………………………..

65

vi

List of Tables

2.1 Test sequences for testing specification machine ……………………... 18
2.2 Graphical symbols of the feature diagram …………………………….. 24
5.1 Comparison of two test methods with the average percentage

improvement of the total length of test sequences and test time ……….

62

5.2 Changing the comparison criteria with the increasing number of
attributes ………………………………………………...……………...

64

1

Chapter 1

Introduction

Various needs of customers have led to mass customization in many industries.
Providing customized products at a reasonable cost drives artisans to product line
engineering. Product line engineering reduces development costs and time, also
increasing product quality compared to single system development. Due to the
wide variety of products, product quality testing is a complex and costly matter.
Also, due to the reduction of the development cost of each product, the share of
the test cost in relation to the total cost in product line engineering has increased
and made the test issue more critical.

The purpose of a software product line is to produce efficient and disciplined
products. Software product line engineering provides the possibility of producing
products with a lower cost in a shorter time and with higher quality. A basic
concept in software product line engineering is reuse, which has led to its division
into two processes: domain engineering and application engineering. In product
line engineering as defined by ISO26550:2015, Domain Engineering is
complemented by Application Engineering which takes care of the life cycle of
the individual products derived from the product line [1]. Reusable components
are generated in domain engineering and used in application engineering to
produce a customized product [2]. The description of a product in a product line
consists of a constant and a variable part. The constant part describes the common
aspects between all products and the variable part describes the different aspects
between different products, called variability [3]. The products of a software
product line are distinguished from each other by their features. In fact, each
feature adds functionality to the product. A distinct combination of features
defines each product [4].

Any business that spends a significant portion of its budget on software
development must implement effective testing strategies. In an organization using
software product lines (SPL) testing strategies are even more crucial since the
share of testing costs increases as the development costs for each product
decreases. Testing of a software product line is a complex and costly task since

2

the variety of products derived from the product platform is huge. In addition to
the complexity of stand-alone product testing, product line testing also includes
the dimension of what should be tested in the platform and what should be tested
in separate products [5]. Testing consumes up to 50% of the total effort in single
system engineering. This percentage increases in software product line
engineering, because the effort of constructing applications decreases due to
comprehensive reuse [6].

Systematic testing is one of the most important and widely used techniques to
check the quality of software. The current tendency is that the effort spent on
testing is still increasing due to the continuing quest for better software quality,
and the ever-growing size and complexity of systems. The situation is aggravated
by the fact that the complexity of testing tends to grow faster than the complexity
of the systems being tested, in the worst case even exponentially. One of the new
approaches to meet the challenges imposed on software testing is model based
testing. In model based testing a model of the desired behavior of the
implementation under test (IUT) is the starting point for testing. The main virtue
of model-based testing is that it allows test automation that goes well beyond the
mere automatic execution of manually crafted test cases. It allows for the
algorithmic generation of large amounts of test cases, including test oracles
starting from the model of required behavior [7]. Several methods for testing
software product line model have been developed. An overview is given in
Section 3.

Reactive systems are software and hardware systems with a (usually) non-
terminating behavior that interact through visible events such as Web servers,
communication protocols, operating systems, smart cards, processors, etc. Model-
based testing is one of the common test methods for reactive software [8]. In this
thesis we develop a model-based test method for product line of reactive systems,
which is further explained in the next section.

1.1 Motivation and Research Problem

Several methods in the field of model-based testing of software product line have
been developed, but the models that are considered to describe the characteristics
of the product line are not based on formal notation. Indeed, most of the test
methods use Unified Modeling Language (UML) models. We attempt to remedy
this by using formal specification models. Software product lines are widely used

3

in industrial fields, and formal models, including finite state machines, are used to
model systems in various fields, including industry. We also use finite state
machines in our effort to model product lines of reactive systems, since this kind
of automata are one of the suitable models for reactive systems. It should be noted
that one of the other methods for modeling reactive systems is the use of Input
Output Labeled Transition System (IOLTS) [8]. The relation of input-output
conformance, called input output conformance testing (IOCO testing) is a method
of model-based testing for IOLTS. In this method, an infinite number of different
test cases are generated from the system description model [7]. Therefore, it is not
possible to apply all test cases, and it is further impossible to estimate the quantity
of particular test cases. The number and length of test cases are used instead in
evaluating the effectiveness of the method. According to what was mentioned
before and also the finiteness of the test theory [8], we argue that finite state
machines are a more suitable choice for our model. The field of work in our
research area is therefore limited to systems that can be modeled with a finite state
machine. To use a finite state machine, we further need to provide a way to
import variability into the machine.

We know that a fundamental concept in the software product line is reuse. In
our work we want to use this concept in the product line test. For this purpose, we
chose the W test method [9], which is one of the efficient test methods for finite
state machines, and by applying necessary changes, we obtain a new variant
capable of testing software product lines. In the continuation of this thesis, we
will see how we reuse the generated test cases to test different products of the
software product line. Our method aims to reduce the cost of the testing process.
In order to evaluate this, we compare our method with the process of applying the
W test method to each product of the product line. The details of the experiments
and their results are given in Chapter 5.

1.2 Summary of research achievements

Among the achievements of this research, the following can be mentioned:
• Importing variability in a finite state machine: The starting point of model-based

testing is to have a model of the desired and expected behavior of the system.
Since in this research the finite state machine is chosen for modeling, it is
necessary to expand it in such a way that it also shows the variability of the
product line.

4

• Presenting an efficient model-based test method, along with applying the concept
of reuse: In this research, we change the W test method in such a way that it
produces reusable test cases for testing the product line of reactive software.

By performing the tests and observing the results, we will see that the production
time of the test cases required for testing all the products of the software product line has
been reduced by using our method compared to the W method. The cost of product line
testing includes the cost of producing test items and also the time necessary to apply them
to products. By reducing the first component we reduce the overall cost of the testing
process.

1.3 Thesis structure

We organized this thesis in 6 chapters. Chapter 2 is dedicated to the background
of the research, which includes model-based testing, finite state machine and its
testing methods, and the software product line. In Chapter 3, we summarize the
previous work related to our research topic. Specifically, we first introduce
several software product line modeling methods, then discuss software product
line test methods, and finally, we outline the test-based model for reactive
systems. In Chapter 4 we describe our method. Chapter 5 is devoted to the
evaluation of the proposed test method. Finally, we summarize our work as well
as state some future research directions opened by our effort.

5

Chapter 2

Preliminaries

The concepts and methods used in this research are briefly described in this
chapter. The first part describes model-based testing. In the second part we first
discuss the definitions and basic concepts related to finite state machines, and
then we explain the W test method, which is an efficient method for testing finite
state machines [8], [9], [10], [11]. In the last part we cover the software product
line, variability, and the feature model. It should be noted that the examples
presented in this chapter are not adopted from any source and therefore are not
accompanied by any citation.

2.1 Model-based testing

Model-based testing is one of the most efficient techniques to deal with software
testing challenges. In model-based testing, the implementation under test (IUT) is
tested for conformance to a model that specifies the expected behavior of that
implementation. Therefore, the start point of this process is having a model of the
expected behavior of the implementation under test. The main advantage of
model-based testing is test automation. Model-based testing allows many test
cases to be generated algorithmically and automatically from a given model. If the
model is valid and accurately describes what the system under test should do, then
all the generated tests will also be valid.

From the industrial point of view, model-based testing is a promising
technique for improving the quality and efficiency of testing and reducing its cost.
Test automation focuses only on the automated execution of test cases. The
purpose of model-based testing however is to automatically generate high-quality
test cases from the models, so it completes the automatic execution of the tests.
Model-based testing is an extension of formal methods and verification
techniques. Model-based testing and formal verification pursue complementary
goals. With formal verification techniques, we can prove that the model of a
system satisfies a number of desired characteristics [7]. The model-based test is

6

based on a valid model of the system; therefore, it shows that the actual and
physical implementation of the system behaves in conformance with this model. It
should be noted however that due to the inherent limitations of the tests, including
the limited number of tests that can be performed and the lack of completeness of
the tests, model-based testing can only show the presence of faults, not their
absence. Model-based testing is generally not complete. However, model-based
testing of finite automata which we did in this thesis is complete.

There are different types of model-based tests, depending on the models
which are used, qualitative aspects which are tested, the desired level of formality,
and the level of accessibility and observability of the system. In this thesis we
consider model-based testing to be formal, specification-based, and black-box.
The basis and starting point of the tests is the specification that determines what
the system under test should or should not do. The specification is given in the
form of a behavioral model, which is assumed to be correct and valid. In addition,
the test is a black-box, that is the implementation under test is considered a black-
box without internal details and can only be accessed and viewed through its
external interface. The test is formal because the specification that determines the
desired and expected behavior of the system is defined by a formal language
whose syntax and semantics are defined in details. Of course, in addition to the
formal specification the method includes the formal definition of the meaning of
conformance for the system under test as well as an algorithm to generate the
tests.

A formal specification-based testing framework is based on several concepts.
The first one is the implementation under test. An implementation can be an
actual physical object such as a hardware component, a computer program with
all its libraries that is running on a processor, an embedded system consisting of
software embedded in a physical device, or a process control system with its
sensors and actuators. Since the test is a black-box, the implementation is also
treated as a black-box. This means that the implementation interacts with its
environment, but there is no information about its internal structure. The only way
a tester can control or observe an implementation is through its interface. The
correctness of an IUT is defined as its conformance to a specification. To check
the conformance of the IUT with the desired specification we need to formally
define the concept of conformance [7]. Input-output conformance (IOCO) testing
[7] is worth mentioning as a practical and important model-based testing
framework. In this test, the specification is modeled using an input/output labeled

7

transition system.

2.2 Finite state machine

Finite state machines (FSM) are used to model systems in various fields,
including sequential circuits and communication protocols in networks. The need
for reliability in these systems has led to extensive research in the field of testing
finite state machines. These machines are also widely used in modeling reactive
systems. The formal definition of finite state machine is as follows.

Definition 2.1 [8]: A finite state machine is the 6-tuple (I, O, S, δ, λ), where I, O,
and S are finite and non-empty sets of input symbols, output symbols, and states,
respectively. δ is the state transition function, δ: S × I → S and λ is the output
function, λ: S × I → O.

Each FSM can be represented by a directed graph called transition diagram
whose nodes and edges correspond to the states and transitions of the machine,
respectively. Each edge is labeled with the input and output of the corresponding
transition. Finite state machine test problems are classified into two types. In the
first type the transition diagram of the machine is known, but the current state of
the machine is not known. By applying an input sequence and examining its
input/output behavior, some information about the current state can be obtained.
The test sequences used to solve this problem are called distinguishing sequences.
The other type of test is the conformity test, in which a finite state machine with a
known transition diagram is given as the specification. The implementation is a
black-box with only its input and output behavior visible. In this type of test, the
conformance of the implementation machine with the given specification machine
is checked.

Although the FSM is a simple model, the conformance test for this machine
is significant and useful in practice. Indeed, FSMs are used to describe a variety
of systems including digital circuits, embedded control systems, and protocols. In
addition, many formal notations for describing communication protocols
including state diagrams in unified modeling language (UML) and specification
and description language (SDL) [12] are very similar to a finite state machine.

In what follows a number of definitions related to the finite state machine are
presented, and then two conformity test methods are given for this machine.

8

2.2.1 Basic definitions

Let M = (I, O, S, 𝛿𝛿,𝜆𝜆) be a finite state machine. The operation of M in state s1 on
input sequence x=a1a2…ak ϵ I* takes the machine to the states s2, s3, …, sk+1 and
generates the output sequence of b1b2…bk ϵ O*, so that for i =1, 2, …, k, the states,
and outputs are si+1 = 𝛿𝛿(si, ai) and bi = λ (si, ai), respectively. Output and state
transition functions can be extended from an input symbol to a sequence of input
symbols using these recursive definitions, respectively:

𝛿𝛿(s, ϵ) = s, 𝛿𝛿(s, ax) = 𝛿𝛿(𝛿𝛿(s, x), a)
λ (s, ϵ) = ϵ, λ (s, ax) = λ (s, x) λ (𝛿𝛿(s, x), a)

In addition, these functions can be extended over a set of states instead of just one
state as follows, with Q ⊆ S a set of states:

𝛿𝛿(Q, x) = {𝛿𝛿(s, x): s ϵ Q}
λ (Q, x) = { λ (s, x): s ϵ Q}

Two states si and sj of machine M are equivalent if and only if for every input
sequence applied to si and sj the machine produces the same output sequence. In
other words, for any arbitrary input sequence x, we have λ (si, x) = λ (sj, x).
Otherwise, the two states are not equivalent and are separated by a separating
sequence. The formal description of a separating sequence is given in Definition
2.2. The definition of equivalence for two states in different machines with the
same set of input and output symbols will be similar. Two machines are
equivalent if and only if for every state in M there is an equivalent state in M' and
vice versa.

Definition 2.2 [8]: The sequence x ϵ I* is the separating sequence for si, sj ϵ S, if
λ (si, x) ≠ λ (sj, x).

We know that in a minimal finite state machine no two states are equivalent.
In the following we present more properties of minimized machines. Every two
states in a minimized machine with n states have a separating sequence of length
at most n-1. In order to generate separating sequences for the states of a machine,
we first form the partition p0, p1, ... of the set of states. Two states s and t are
placed in the same class pi if and only if they have no separating sequence of
length i. In other words, for each sequence x ϵ I* that |x| ≤ i, λ (s, x) = λ (t, x).

9

Generally, p0 = {S} and pi+1 is obtained from pi.

Lemma 2.1 [8]: If ρi+1 = ρi for some i, then the rest of the sequence of partitions is
constant, i.e., ρj = ρi for all j > i.

Proof [8]. We prove the equivalent, contrapositive form: ρi+1 ≠ ρi ⇒ ρi ≠ ρi-1 for all
i ≥ 1. If ρi+1 ≠ ρi then there are two states s, t ∈ S with a shortest separating
sequence of length i +1, say ax ∈ Ii+1 (i.e., a is the first letter and x the tail of the
sequence). Since ax is separating for s and t but a is not, x must be separating for
δ (s, a) and δ (t, a). It is also a shortest separating sequence, because if y ∈ I* was
shorter than x, then ay would be a separating sequence for s and t, and shorter than
ax. This proves that there are two states δ (s, a), δ (t, a) with a shortest separating
sequence of length i, so ρi ≠ ρi-1. ■

In a minimized machine these classes will eventually contain only single
states. Since the maximum length of the separating sequence in a machine with n
states is n - 1, these classes do not change from i = n-1 onwards. To generate
separating sequences for the states of a finite state machine, we first form p0, p1,
... pr, where r is the smallest index such that pr contains only single states. Two
states s, t ∈ S belong to different classes of p1, if and only if there is an input
symbol a ∈ I, So that λ (s, a) ≠ λ (t, a). In this way, pi is calculated. For i > 1, ρi is
obtained from ρi-1. Two states s, t ∈ S belong to different classes of pi, if and only
if for an input symbol a ∈ I the states δ (t, a) and δ (s, a) belong to different
classes of pi-1. In this way, all the pi can be calculated for i > 1.

To obtain a separating sequence with the shortest length for states’ s and t, we
find the smallest index i such that s and t belong to different classes of pi. As
mentioned in the proof of Lemma 2.1, in the separating sequence of the form ax,
the sequence x is the shortest separating sequence for δ (t, a) and δ (s, a). So, we
choose the input symbol a that takes s and t into different classes of pi-1. That is, δ
(t, a) and δ (s, a) should be placed in different pi-1 classes. We continue this
process until we reach p0. The concatenation of these input symbols forms the
separating sequences s and t. In order to better understand what was said, let us
consider an example.

We want to find a shortest separating sequence for states s2 and s3 from
Figure 2.1. It is necessary to first partition the set of states. As we know, p0 = {S}.
The states s0 and s1 generate the same outputs for both inputs in I = {a, b} and
thus are placed in the same class of p1. States s2 and s3 are also placed in the same

10

class for the same reason. In this case, we have: p1 = {{s0, s1}, {s2, s3}}. Because δ
(s0, a) and δ (s1, a) are in different classes of p1, s0 and s1 each form a singleton
class in p2. While states s2 and s3 are still in the same class as p2. As we know,
states s2 and s3 with input b go to states s0 and s1, respectively, which are in
different classes of p2, so these two states are also separated in p3. Sections p0, …,
p3 are given below.

p0 = {{s0, s1, s2, s3}} p1 = {{s0, s1}, {s2, s3}}
p2 = {{s0}, {s1}, {s2, s3}} p3 = {{s0}, {s1}, {s2}, {s3}}

Figure 2.1. Finite state machine for an example system

Note that p3 is the first partition where s2 and s3 are in different classes. By
applying the input symbol b to these states, the machine goes to states s0 and s1,
which are in different classes of p2. In this way we found the first symbol of the
separating sequence. States s0 and s1 also go to s1 and s3, respectively with input a,
which are located in separate classes in p1. So, a is the second input symbol of the
separating sequence. s1 and s3 produce different outputs with both input symbols a
and b. In this case, the last input symbol can be a or b, which leads us to the
sesparating sequences baa and bab for states s2 and s3.

2.2.2 Equivalence of finite state machines

Suppose M = (I, O, S, δ, λ) and M' = (I, O, S', δ', λ') are two finite state machines
with the same set of input and output symbols. The homomorphism ϴ from M to
M' is a mapping from S to S', such that for each state s ∈ S and each input symbol
a ∈ I the following relation holds:

𝛿𝛿′(ϴ (s), a) = ϴ (𝛿𝛿(𝑠𝑠,𝑎𝑎))
𝜆𝜆′(ϴ (s), a) = 𝜆𝜆(𝑠𝑠, 𝑎𝑎)

11

If ϴ is a one-to-one function, it is called an isomorphism. Machines M and M' are
isomorphic if there is an isomorphic mapping from one to the other. In this case,
the two machines have the same number of states and have the same behavior
regardless of the differences in state names. As a result, it can be said that
isomorphic finite state machines are equivalent.

Equivalence of machines is an equivalence relation on all FSMs with the
same sets of input and output symbols. Each equivalence class contains a machine
with a minimum number of states, called a minimized machine. A finite state
machine is minimized if and only if no two states in it are equivalent. All
minimized machines in an equivalence class have the same number of states. For
any two minimized machines in a class, there is also a one-to-one correspondence
between the equivalent states, which defines a one-to-one isomorphism between
them.

For each finite state machine, its equivalent minimized machine can be
obtained. Equality of states is an equivalence relation on the set of states that
divides them into equivalence classes. An algorithm for classifying equivalent
states exists [11]. Each class contains equivalent states and the states of different
classes are inequivalent.

To obtain the minimized machine of a finite state machine, we first obtain the
equivalence classes for states. Suppose that for the machine M = (I, O, S, δ, λ)
classes B1, ..., Br have been determined. Note that {B1, ..., Br} is a partition on S,
meaning that Bi ∩ Bj = ∅ (i ≠ j) and 𝑈𝑈𝑖𝑖=1𝑟𝑟 Bi = S holds. Each state of S is in only
one of these classes. In the case that si and sj are in the same class, they produce
the same output for each a ∈ I, and also δ (si, a) and δ (sj, a) are in the same class.
To build the minimized machine M', we consider each class Bi as one state. In this
case, the set of states of the minimized machine will be S' = {Bi| i= 1, ..., r}. We
know that all the states in Bi go to states that are all in the same block Bj on an
input symbol a, and also produce the same output o. Therefore, we have: δ' (Bi, a)
= t and λ' (Bi, a) = o. In this way, the output and transition functions of the
minimized machine M' are obtained.

2.2.3 Conformance testing

This section is dedicated to the problem of finite state machine conformance
testing. In the definition of conformance testing, the finite state machines MS and
MI describe the specification and implementation of the system, respectively. It is

12

assumed that the transition diagram of MS is known, while in the case of MI only
its input-output behavior is visible. In other words, the machine under test is a
black-box. We want to check whether MI implements MS correctly, that is,
whether MI is in conformance with MS or not. Conformance testing is also called
fault detection, because the goal is to detect points where MI has not implemented
MS correctly. Conformance is defined as an equality or an isomorphic relationship
between two machines that specify and implement the system. We say that MI
conforms to MS if and only if their initial states are equivalent, that is, they
produce the same output for each input sequence. In order to check the
conformity, a set of input sequences is generated from machine MS and applied to
machine MI. If for each input sequence MI produces the expected output sequence
(that is, the output produced by MS), we say that MI conforms to MS.

Each pair of input sequence and expected output sequence is considered as a
test case. The collection of test cases is called a test suite. Applying the test cases
one after the other is equivalent to applying the sequence obtained from the
concatenation of these test cases. This input sequence is called checking
sequence. Its formal definition is given as follows.

Definition 2.3 [8]: A checking sequence for a finite state machine MS is a
sequence of input symbols that distinguishes the class of machines equivalent to
MS from other machines.

The common goal of all testing methods is to check the conformity of MI
with MS by generating a checking sequence or a set of input sequences as test
cases. The difference between these methods is in the cost of producing test cases
and the fault detection ability. The shortness of the test cases increases the
applicability of the test method. On the other hand, a test suite should cover the
implementation as much as possible and discover its faults. The main difference
between these methods is in the assumptions that each makes about MS and MI
machines. Some methods can only be used under certain assumptions. while
others are used with more general assumptions, but they produce a very long
checking sequence. The following four conditions must be met for each test
method:

• MS is minimized. Equivalent machines have the same input-output
behavior, so it is not possible to distinguish them by observing the outputs.

13

For this reason, any machine that describes system specifications must be
minimized.

• MS machine is completely specified. This means that its state transition
and output functions are defined for each state s ∈ S and each input a ∈ I.

• MS is strongly connected. That is, all states can be obtained from all other
states through one or more transitions. In some methods, it is enough that
all states can be obtained from the initial state. These methods require a
reset message to reset the machine, otherwise a dead-end may cause the
test to stop. In this situation, the existence of the reset message replaces
the strong connection requirement in the specification machine.

• MI does not change during the test. In addition, its set of input and output
symbols is the same as MS.

These four conditions are mandatory and are assumed in all test methods.
However, there are other conditions that are not mandatory, but help the testing
process. These conditions are listed below.

• Equality of the number of states: the number of states in MI is equal to MS.
In this case, it can be concluded that possible faults do not increase the
number of states. Based on this assumption, possible faults in MI are
output errors and transition errors. An output fault occurs when a
transition in the implementation machine produces incorrect output. A
transition error is when the implementation machine goes to the wrong
destination state. A more general assumption is that the number of states
of machine MI has an upper bound m, which can be larger than the number
of states of MS.

• Reset message: Each of the MI and MS machines has a special input called
reset, which takes the machine from any state to the initial state and does
not produce any output. In other words, for each s ∈ S we have δ (s, reset)
= s1 and λ (s, reset) = -.

• Status message: MI and MS machines have a special input called status,
which returns their current state as its output. The state of the machine
does not change by applying this message. In other words, for each si ∈ S
we have δ (si, status) = si and λ (si, status) = i.

14

• Set message: When the set sj message is received in the initial state, the
machine goes to state sj and does not produce any output. In other words,
for each t ∈ S we have δ (reset, set(t)) = t and λ (s, set(t)) = -.

Assuming that all the conditions mentioned above are met, a simple
conformance test using the set message is given below.

Algorithm 2.1 [8]: Conformance test using set message.
The following steps are repeated for each s ∈ S and each a ∈ I:

1. By applying the reset message, we transfer the MI machine to the initial
state.

2. By applying the set message, we move the MI machine to the s state.
3. We apply the input symbol a.
4. We check the conformance of the generated output with the output of MS.
5. By applying the status message, we check the conformance of the

destination state with the expected state, i.e., δS (s, a).

Algorithm 2.1 checks whether MI has correctly implemented MS or not. This
algorithm detects any output and transition faults in Steps 4 and 5, respectively. In
addition to the input symbols belonging to I, it is necessary to test the set, reset
and status messages as well. In order to test the status message, in every si state,
after using set si, status should be applied twice. First, it must be applied in Step
3, to ensure that the status is in state si and gives the correct output i. If the
implementation of set is wrong and takes the machine to sj instead of si, and the
status message in sj gives the wrong output i; this fault will be discovered during
the test of sj. The second use of status is in Step 5, in order to check that the first
use of status did not change the status. Once we are sure of the correct
implementation of this message, we can test set and reset by applying them to any
state and checking the correctness of the destination state by status.

The checking sequence of Algorithm 2.1 is obtained from the concatenation
of reset, set(s), a and status for each s ∈ S and each a ∈ I. Its length is 4pn where
p = |I| is the number of input symbols and n = |S| is the number of states of the
machine. The main weakness of Algorithm 2.1 is the need for the set message,
which is not always available. Sequences that traverse the machine and go
through each state and transition at least once can be used in place of set.

In the method that will be presented below the status message is not used to

15

specify the current state of the machine. This method assumes that the machines
do not have a status message (but have a reset message), and use separating
sequences to detect a state. It worth noting that because MS is minimal no two of
its states are equivalent. As a result, for both states si and sj there is an input
sequence x, which is considered a separating sequence and differentiates these
two states by generating different outputs i.e., λ (si, x) ≠ λ (sj, x).

2.2.4 The W test method

The W method is one of the most widely used methods for testing systems
modeled as finite state machines. This method only needs the reset message, and
it uses a covering transition set and a separating set, which are used to test
transitions and recognize states, respectively. The minimality of the machine that
describes the specification (MS), is necessary to calculate the separating set and is
considered one of the necessary conditions for using the W method. Another
condition is that MS and MI must be deterministic and completely specified, and
all their states can be accessed from the initial state. The number of states of MI
has an upper limit of m, which can be greater than n, which is the number of states
of MS.

In the W method, all the transitions of MI are traversed using the transition
covering set. In each transition, in addition to comparing the output with the
output of the corresponding transition in MS, the correct destination of the
transition must also be checked. For this purpose, the separating set is used. The
transition cover set is formally defined as follows.

Definition 2.4 [8]: The transition cover set P of the finite state machine MS is a
set of input sequences such that for each s ∈ S and a ∈ I, there is a sequence x in
P that starts from the initial state and ends at s with transition a. In other words,

∀ s ∈ S and ∀ a ∈ I, ∃ x ∈ P such that x = y.a and δ(s1, y) = s

The set P can be obtained using a breadth-first traversal of the transition
diagram of MS. This set is closed under prefix, meaning that if x belongs to P,
then every prefix of x also belongs to P. One way to obtain the set P is to
construct a test tree T from MS and then extract partial paths from it. A partial
path is a sequence of edges starting from the root of the tree and ending at a
terminal or non-terminal node. Since each edge of T is labeled with an input

16

symbol, a partial path will be a sequence of input symbols. Therefore, P is a set of
input sequences. Note that ϵ (the empty input sequence) is a member of every set
P. Algorithm 2.2 shows the steps of constructing the test tree.

Algorithm 2.2 [8]: Test tree construction

1. Set the initial state of MS as the root of the T tree. This is considered as
level 1 of the tree.
2. Suppose the tree is built up to level k. Then level k+1 is built as follows:

(a) From left to right, consider each node t of level k.
(b) If the node t is the same as one of the level j, where j ≤ k, it is
considered as the last node.
(c) Otherwise, suppose the label of this node is si. For each input x, if
the machine MS has a transition from si to sj, an edge with label x and
destination sj is connected to node t.

The W method uses the set P to test each MI transition and the separating set
to check the destination node of that transition. The separating set or in short W is
formally defined as follows:

Definition 2.5 [8]: The separating set of finite machine MS is a set of W input
sequences such that for each separate state s and t in S, there is an input sequence
in W, which applied to these two states produces different outputs. In other words,
we have:

∀ s, t ∈ S, ∃ x ∈ W → λ (s, x) ≠ λ (t, x)

The set W exists for every minimized finite state machine. This set is not
unique and the fewer the sequences, the longer their lengths. To obtain the set, it
is necessary to iteratively partition the state set of the machine into Bi blocks.
Initially, w = ∅, B1 = S, and i = 1. We then iteratively choose two separate states s
and t from Bi and obtain a separating sequence x for them. We add the sequence x
to W and break the block Bi into smaller blocks based on the output of each of its
states according to sequence x. so that all states that produce the same output for x
are placed in the same block. We continue this process until all the blocks become
singletons, and thus obtain the set W.

For each two separate states, the set W contains a separating sequence that

17

distinguishes these two states from each other. So, the outputs produced by one
state by applying sequences W are different from the outputs of another state. Due
to this feature, the W method uses this whole set instead of the status message to
check the conformance of the destination state of each transition with what is
expected. Since the set W can contain several sequences, the machine must go to
each destination state several times to apply all these sequences to each
destination. For this purpose, reset message and the set P are used. As a result, the
input sequences that the W method produces as test sequences are obtained by
concatenating each sequence P with each sequence W. It should be noted that at
the beginning of each test sequence it is mandatory to use the reset message to go
to the initial state. In other words, the set of test sequences produced by the W
method is equal to {reset}.P.W. Each output fault is detected by a sequence of P
and each exit fault is detected by a sequence of W. If no error occurs when
applying these sequences to MI and the set of outputs produced is the same as the
outputs of MS, then the implementation is proven to be correct.

To better understand the performance of the W method, we will use the
following example. Figure 2.2(a) shows a specification finite state machine Ms. In
this machine I = {a, b} and O = {0, 1}. To obtain the test sequences, we first
calculate the separating set. The sequence a, distinguishes the states s0 and s2, as
well as the states s1 and s2. To distinguish s0 from s1, b must also be included in
the separating set. As a result, we have W = {a, b}.

(a) specification machine (b) implementation machine

Figure 2.2 Finite state machines describing the specification and implementation
of a system

To obtain the transition cover set, we have built the test tree using Algorithm
2.2, as seen in Figure 2.3. The partial paths of this tree form the transition cover
set and therefore P = {ϵ, a, b, ba, bb, bba, bbb}. Now, having the covering and
separating sets, we can obtain the test sequences. Table 2.1 shows the test

18

sequences along with their output in MS and the transitions tested. In this table, r
represents reset.

Figure 2.3 A test tree for MS machine

Figure 2.2(b) shows an incorrect implementation of MS. By applying the test
sequences from Table 2.1 to this implementation machine and comparing its
outputs with the expected outputs of each sequence, implementation faults are
discovered. The transition fault in this machine, which goes from state s2 with
input a to state s0 by mistake, is detected by the rbbaa test sequence and output

fault s1
𝑏𝑏/0
�� is detected by the rbb test sequence.

P ϵ a b ba bb bba bbb

Trans. s0
𝜖𝜖
→ s0

𝑎𝑎/0
�� s0 s0

𝑏𝑏/0
�� s1 s1

𝑎𝑎/0
�� s0 s1

𝑏𝑏/1
�� s2 s2

𝑎𝑎/1
�� s2 s2

𝑏𝑏/0
�� s2

r.P.W ra rb raa rab rba rbb rbaa rbab rbba rbbb rbbaa rbbab rbbba rbbbb
output 0 0 00 00 00 01 000 000 011 010 0111 0110 0100 0100

Table 2.1 Test sequences for testing specification machine.

2.3 Product line engineering

The way that goods are produced has changed significantly in the course of time.
In the past, products were handcrafted for individual customers. Over time, the
number of people who could afford to buy various kinds of products increased
and the production lines emerged, which enabled mass production. This mass
production reduced costs compared to customized production and at the same
time reduced the possibilities for diversification. Customers were content with
standardized mass products for a while, but all the people did not have same
reasons for buying products and therefore, all of them did not want the same type
of products. For example, it can be said that some people want an automobile

19

suitable for urban life and others for living in the countryside. Some customers
need a small size automobile and others need a larger family size automobile.
Therefore, the industry faced an increased demand for customized products and
this was the beginning of mass customization, which means taking into account
the needs of customers and preparing the products that they want. In fact, mass
customization is the large-scale production of goods tailored to individual
customers’ needs. From the customer's point of view, mass customization means
the ability to have an individualized product. For a company however, mass
customization means higher technological investments which leads to higher
prices for the individualized products and/or to lower profit margins for the
company. Both effects are undesirable, so many companies started to introduce
common platforms considering common parts in different products. The use of a
common platform for different products reduced the cost of production. In
general, a platform is any base of technology on which other technologies or
processes are built. The combination of mass customization and a common
platform allows one to reuse a common base of technology and, at the same time,
to bring out products in close accordance with customers’ wishes. The result of
this combination is product line engineering [2].

2.3.1 Creating the Platform

In single-system engineering products are regarded as independent, self-contained
items this means having distinct projects for developing distinct products. But
developing by product line engineering requires the creation of a platform that
suits all products. For this purpose, attention is paid first to what is common
between the products and then to their differences. In the first step artefacts that
can be reused for all products are provided. The products of a product line can be
different in the functions they provide, the requirements they fulfill, and even
their architecture. These differences should be identified and described during the
development process. Creating flexibility in reusable artifacts allows for mass
customization.

Different automobiles in an automobile production line can have different
windshield washers, so machines should be designed to have a common approach
in supporting different engines for these washers. Along with this flexibility
comes a series of limitations. For example, in an automobile with the possibility
of opening the roof, it is necessary to comply with the limitation that when the

20

roof is open the rear window washer is disabled [2].
Flexibility is a precondition for mass customization; it also means that we can

pre-define what possible realizations shall be developed. In addition, it means that
we define exactly the places where the products can differ so that they can have as
much in common as possible. For example, in an automobile manufacturing
product line, there is a limited number of window washers that must be identified
in advance. In the context of software product line this flexibility is called
variability. This variability is the basis of mass customization. Further
explanations regarding variability are given below.

The variation point is a point in description of the product line which is
different for different products. Different initial values to the variation point result
in different products. A configuration of the product line defines specific values
for the variation points.

2.4 Software product line engineering

Software product line engineering is the development of applications using
platforms and mass customization. Development of applications using platforms
means planning ahead for reuse, building reusable parts, and reusing components
that are built for this purpose. Development of an application for mass
customization means applying the concept of managed variability. It means that
both the commonalities and the differences of product line applications must be
modeled.

Using product line engineering principles for developing software reduces the
cost of software development, because platform artifacts can be reused in several
different systems. Due to the testing of artifacts in different products, the quality
of the software also increases. In addition when changes are made in an artifact
(for example, to correct an error), these changes are propagated to all products
that use that artifact, and as a result maintenance costs are reduced.

Adapting product line engineering to software development has always
encountered obstacles. Certain prerequisites are needed to overcome these
obstacles. For a long time, a major obstacle to adapting product line engineering
was the lack of needed technology for simple implementation of the rules of
product line engineering. One of the most important technologies is object-
oriented programming. This technology makes it easy to use concepts such as
encapsulation that are necessary to realize managed variability. Another important

21

achievement is the introduction of component technology, which makes it
possible to encapsulate software in parts with low connectivity. Component
technology supports the realization of managed variability by limiting the range in
which variability is possible. Late binding and dynamic binding methods allow
delays in configuration related decisions. Therefore variability can be designed
and implemented without worrying about the final shape of various
configurations. The use of these techniques facilitates the implementation of
platforms and provides a simple way to realize mass customization.

2.4.1 Software product line engineering framework

A software product line engineering framework is a combination of the core
concepts of product line engineering, namely the use of platforms and the
provision of mass customization. In terms of software, a platform is a collection
of reusable artifacts that include all types of software development products,
including requirement models, architectural models, software components, and
various test plans. The concept of variability of platform must then be introduced.
As a result, the artifacts that are different in various products of the software
product line are modeled using variability. There are two development processes
in software product line engineering:

• Domain engineering: In domain engineering, product line similarities
and differences are identified and then a reusable platform is
developed.

• Application engineering: Application engineering is a process of
software product line engineering in which product line applications
are built by reusing domain artifacts and applying product line
variability. In other words, this process is responsible for extracting
product line applications from the platform obtained in domain
engineering.

The advantage of separating these two processes is to separate the two
categories of (a) development of a strong platform and (b) building special
customized applications in the shortest time.

2.4.2 Variability

The definition and implementation of variability throughout the various phases of

22

the software product line cycle is supported by the concept of managed
variability. The time to decide on variability is called the variability binding time.
In common language, the word variability stands for the ability to change or the
tendency to change. However, the variability that we are considering is purposeful
rather than accidental. Answering three questions helps define product line
variability:

1. What changes? Answering this question means identifying parts and
features of the environment that change. In fact, this question leads us to the
definition of variability as a variable part of the existing world or a variable
feature of such a part.
2. Why does the subject of variability change? There are various reasons for
changing a part or its feature. including different needs of stakeholders,
different local laws, technical reasons, etc. Additionally, if there is a
dependency between different parts, then the reason for variation of one part
can be the variability of another part.
3. How does the subject of variability change? This question is related to
different forms that a variability subject can take. To identify the different
forms of a variability subject, a variability object is defined. A variability
object is a special instance of a variability subject.

Considering these three questions plays an important role in thinking about
variability. Being aware of variability and acting consciously on it is an important
prerequisite in modeling variability. In the field of software product line
engineering, a variation point is a representation of the variability subject in the
product domain, enriched with context information.

2.4.3 Variability models

Variability can be defined as a part of software development artifacts, or as a
separate model. The variability model represents the common characteristics and
artifacts of a product line and is actually used to manage variability in the product
line. Many modeling methods for variability have been proposed over the recent
years, and each one uses its own concepts for modeling variability. Among these
methods, component-based models such as Koala [13], feature model [14],
orthogonal variability model [2], and unified modeling language models [15] like
use case model [16] are worth mentioning. In this thesis we use the feature model

23

to model the variability of the product line. This model is described below.

2.4.3.1 Feature model

The feature model is widely used in software product lines to manage shared and
variable features. The products of a software product line are distinguished from
each other through their features. In fact, a unique product is defined by features
and a product line is defined by a feature model [17]. The feature model was
proposed for the first time in 1990 [14]. The following is one definition of feature
[14]: "Feature means an outstanding or distinctive aspect, quality or characteristic
of a software system or systems, which can be seen by the end user".

Note that the feature is defined as a visible property for the user [14].
However, elsewhere features are considered for each stakeholder including
customers, analysts, architects, developers, etc., and therefore a feature can
represent any functional or non-functional property at the level of requirement,
architecture, component, platform or any other level [18].

If we choose the feature model as the variability model in the software
product line, a configuration will be a set of features. Also, a valid configuration
is a configuration that satisfies the constraints and limitations of the feature
model. Each valid configuration results in the production of one product from the
product line. The presence of a feature in a configuration makes the product
corresponding to that configuration have the desired feature. In Chapter 4, where
our proposed method is presented, configuration means valid configuration.

A feature information model represents all possible products of a software
product line as features and relationships between them. A feature model is a set
of features that are arranged hierarchically according to the relationships between
them. These relationships are divided into two categories:

• Relationships that can exist between the parent feature (or compound)
and its child features (or sub-features).

• Cross-tree (or cross-hierarchy) relationships or limitations that usually
include a requirement relationship or an exclusion relationship

Feature charts can be defined more precisely [19]. In fact, a feature model
consists of a feature graph and additional information for each feature. A feature
graph consists of a set of nodes, a set of directed edges, and a set of arcs for the
edges. Arcs connect a subset of edges related to a node and classifies the sub-

24

nodes of a node. Table 2.2 shows the graphical symbols of the feature diagram.
The description of these symbols is given below.

Symbol

Description Mandatory
Feature

Optional
Feature

Alternative
Feature

Or-
Feature Requires Excludes

Table 2.2 Graphical symbols of the feature diagram [19].

• Mandatory: A child feature has a mandatory relationship with its parent if
the child feature exists in all products in which the parent attribute
appears. The features at the root are always mandatory and are present in
all products.

• Optional: A child feature has an optional relationship with its parent if the
child feature can optionally exist in all products in which the parent
attribute appears.

• Alternative: A set of child features have alternative relation with their
parent, if only one of them can appear in the product of which the parent
feature is a part.

• Or: A set of child features have an or relationship with their parent,
whenever one or more of them can appear in the product of which the
parent feature is a part.

In addition to relationships between parent and child features, a feature model
can also include constraints between features. These restrictions include:

• Requires: If feature A requires feature B, choosing A in a product requires
choosing B in that product.

• Excludes: If feature A excludes feature B, both features cannot be part of
the same product.

In addition to these limitations, more complex relationships can exist between
features in the form of logic formulas [20]. Figure 2.4 shows a simple feature
model of a mobile phone.

Based on the feature model in Figure 2.4, all mobile phones must be able to
support calls and also include a screen for basic, high-resolution or colorful

25

information display. Phones may also support GPS and multimedia devices such
as cameras or music players or both. Phones that include a camera need a high-
resolution screen. GPS and basic display are incompatible features and mutually
exclusive.

Figure 2.4 A sample feature model of mobile phones [17]

26

Chapter 3

Previous Work

Two essential parts of this research are behavioral modeling and reactive system
product line testing. Therefore it is necessary to review and categorize the
previous work that is related to each of these two concepts. Also, the position of
the work done in this research, which is given in the next sections of the thesis,
should be specified in this context. There is a taxonomy of the work done for
model-based test case generation and prioritization [21]. In this section, the
necessity of conducting this research and its advantages compared to previous
works are also discussed.

3.1 Modeling product line of reactive systems

A design method based on integrated modeling language for the software product
line named PLUS (Product Line UML-Based Software Engineering) was
developed [15]. This method extends the UML-based modeling used for single-
system to be suitable for software product line modeling. PLUS aims to model
commonalities and variabilities in a software product line. The PLUS method is
an informal method for modeling the entire software product line. Behavioral
modeling can be used in this method to model the reactive software product line.

One of the activities performed in the PLUS method is behavior modeling
with a finite state machine. Many systems are state-dependent. In such systems,
the activities depend not only on the input but also on the previous state of the
system. A state transition diagram, state transition table, and state chart can be
used to define the finite state machines. The notation of state tables in UML is
based on an existing state table notation [22]. In the PLUS method, the statechart
is used. The inherited state machine and parameterized state machine can be used
to model variability in the software product line.

Inheritance is one of the two main methods for modeling variability with the
state machine. A specialized state machine for a product is a child state machine
that inherits from the parent state machine which describes the product line

27

commonalities. This machine inherits all the states, transitions, and activities of
the parent machine, and also by adding new states, transitions and activities, it can
describe the new product. Another method to model variability with a state
machine is to use a parameterized state machine. In this method, there is only one
parameterized state machine that includes all states, transitions, and activities
related to all features of the product line. For each feature there is a Boolean
condition called the feature condition. If the Boolean condition of a feature is true,
that feature is selected. If there are several features and only one of them can be
present in the product, only one of the conditions can be true per product. Feature
conditions are placed on transitions as transition conditions. Therefore in order for
a transition to be performed, in addition to the presence of the desired input, the
condition of the corresponding feature of that transition must also be true, which
means that the corresponding feature is present. For each product, a number of
these feature conditions are true [15].

We presented above a software product line modeling methods from the
perspective of software engineering. Methods for the formal modeling of the
software product line have also been provided, including modeling by transition
systems [23, 24, 25, 26], Petri net [27], and process algebrae [28, 29].

A behavioral model called Extended Modal Labeled Transition System
(EMLTS) [26] is proposed to model different states of variability that usually
comes in the definitions of product families.

An EMLTS describes a family of products by determining the mandatory and
optional transitions of each state of a system. A labeled transition system consists
of a set of states and a set of actions, which are used as labels for transitions
between states. An important point when modeling the behavior of a product with
a labeled transition system is that different products perform different actions in
the same state. So all the different facilities, which make the products belong to
the family, should be included in the definition of the product family. This can be
done by defining Modal I/O Automata to model variability [23]. A Modal I/O
Automaton with two transition relations determine allowed (may) and required
(must) behaviors. Most of the variability features can be modeled by these
transition relations in the product line definitions. However, the alternative
variability cannot be modeled by this machine and thus the model was extended
[3], by the introduction of EMLTS.

An EMLTS introduces a family of labeled transition systems, where any
labeled transition system that describes a product can be extracted from that

28

extended modal labeled transition system.
An Extended Modal Labeled Transition System (EMLTS) is a quintuple (S,

Act, s0, □, ◇), where S is a set of states, Act is a set of actions, s0 ∈ S is the initial
state, □ ⊆ S × 2Act×S is the “at least k of n” transition relation, and ◇ ⊆ S ×2Act×S is
the “at most k of n” transition relation [3] which is shown as:

𝑠𝑠𝑠𝑠1, . . . ,𝑎𝑎𝑎𝑎
→
□𝑠𝑠1, . . . , 𝑠𝑠𝑠𝑠 and 𝑠𝑠𝑠𝑠1, . . . ,𝑎𝑎𝑎𝑎

→
◇𝑠𝑠1, . . . , 𝑠𝑠𝑠𝑠

In these two relations, □ mean that in any product of the family should have
at least one of the n transitions 𝑠𝑠𝑠𝑠 𝑖𝑖

→
𝑠𝑠𝑠𝑠, while in ◇ any product of the family should

have at most one of the n transitions. It is noteworthy that in each of these two
relationships there is a target state for each action. Using these two relations
various variability can be modeled. For example, the relation exactly one of the n
transitions, which represents alternative variability, is obtained from □ ∩ ◇.

A process algebra can also be used to describe the specifications of reactive
software product lines [28]. In this paper, PL-CCS is introduced as an extension
of CCS [30] to model the interaction of software components used in software
product lines. While CCS is suitable for describing the relation of software
systems, it does not support the definition of a set of systems (product family).

More specifically, CCS is extended [28] by adding the variants operator ⊕,
which allows modeling the alternative behavior i.e., alternative process. This
means that only one of the alternative processes will be existing in the final
system. The main advantage of the modeling product line behavior with PL-CCS
is that it provides automatic verification by model checking.

The models introduced so far to describe the product family have not
considered the importance of features as the unit of differentiation. That is, they
can model different behaviors but are not able to associate each product with its
behavioral description and characteristics. In addition, they do not use the
information available in the variability models such as the copresence of several
features in a product or the prohibition of the presence of a feature by another
feature. To deal with these challenges, one can extend the transition system with
features and introduce featured transition system (FTS) to describe the behavior
of the entire product line [25]. In this model, each behavior is explicitly associated
with the feature that causes that behavior, and this association takes place at the
transition level. For this purpose, each transition is labeled with a feature. In some
cases, a feature removes transitions rather than adding them. To show this, it is
necessary to define a priority relationship between transitions. A priority

29

relationship can be defined between two transitions that leave the same origin
state and are labeled with different features. In this case, for any product that
includes both features, the transition with lower priority will be removed. In
general, the priority relationship is a solution for modeling situations in which a
feature overrides the behavior of another feature.

We know that every product consists of a set of features. To obtain the
behavior of a specific product, it is enough to project the model that specifies the
entire product line i.e., the FTS on the features of that product. For this purpose,
we remove all transitions labeled with features not available in that product, as
well as lower-priority transitions that are overridden by higher-priority transitions.
The result of the projection is a normal transition system.

3.2 Software product line testing

Efficient testing strategies are very important for any organization where the share
of software development costs is high. This issue is more critical for the
organizations that use a software product line. Due to the large variety of products
deriving from the product line platform, software product line testing is a complex
and costly practice. In the early research on product line not much attention was
paid to the issue of product line testing, but over time, the need to investigate this
field became evident [5].

High productivity in product line engineering requires an efficient testing
method, and the testing methods are being used in single-system engineering are
not good and efficient enough for this purpose. In the single-product production,
testing accounts for about 50% of the total effort and cost, and this percentage
increases in product line engineering. Therefore, it can be said that testing is a
bottleneck in the development of product families [6]. The main challenge in
software product line testing is the large number of required tests. To fully test the
product line it is necessary to test all the products. We know on the other hand
that the number of products grows exponentially with the increase in the number
of features. Accordingly, the main problem is to reduce the redundant tests and
minimize the effort required for testing through the reuse of the test artifacts.

3.2.1 Automated and model-based test generation

The idea of proactive reuse in product family testing was introduced [6], where
reusable test cases generated in domain engineering are used to test different

30

products. The paper presents the ScenTED (Scenario based TEst case Derivation)
method, which is a model-based and reuse-based method for test cases derivation.
Model-based testing is a method of deriving test cases in single-system
engineering and basically consists of two main steps as shown in Figure 3.1. In
the first step a test model is created from the requirements, and in the second step
test cases are generated using coverage criteria or other test extraction techniques.

Figure 3.1 Model-based Testing in Single System Development [6]

The model-based testing technique includes several advantages. For example,
test cases are generated in an organized and repeatable process with stopping
rules. Therefore, model-based testing is a prerequisite for the automated
generation of test cases. Another important aspect is that the test engineers will
check the correctness of the requirements by creating the testing model. This
means that the defects in the requirements, such as ambiguity or lack of
completeness, can be discovered during the development of the testing model.

In applying model-based testing to the software product line, in addition to
domain engineering, one must also consider application engineering. The test
models produced in domain engineering include variability and the generated test
cases include variability information. In the application engineering test a new test
model is actually not developed. In other words, in application engineering the
test model of each product is developed based on the requirements of that product
and by reusing the domain test model. In this way, variability is removed from the
domain test model and new requirements are added to it. Test cases can then be
derived in two steps. First, reusable test cases are selected from domain
engineering. Some of them need to be changed to adapt to the product, based on
the variability selected in that product. In the second step, based on the new
requirements added to the test model, new test cases are generated if necessary.

31

Figure 3.2 shows the application of model-based testing in a software product
line.

Figure 3.2 Model-based Testing in Software Product Family Engineering [6]

In the ScenTED test method it is assumed that the requirements are specified
as use cases. In this method, activity diagrams are used for the test model and
sequence diagrams are used for the test case scenarios. Test case scenarios
describe the activities of the engineer responsible for the test and the responses of
the system [6].

A model-based testing method for a software product line generates test
specifications from use cases and the feature model. This test specifications are
configured and used to test each product in the product line. Hasan Gomma, the
provider of the PLUS method that we mentioned earlier, presents a model-based
software product line testing method that reduces the number of test specifications
necessary to cover all use cases, features, and all possible combinations in the
product line [31]. The CADeT (Customizable Activity Diagrams, Decision Tables
and Test Specifications) method presented in this paper uses both test cases and
feature models to generate test specifications. Another process is proposed to
generate test cases based on application cases and variability model [32].

Test case generation models were also established based on formal
specifications that are described by process algebrae [33, 34]. An incremental

32

method for test generation using Alloy also exists [4]. Alloy [35] is a declarative
language based on relational logic to describe specifications. The Alloy analyzer
is then used to generate the test incrementally, which means that the analyzer is
run more than once and on the partial specifications, which makes the problem
easier. Li, et al. [36] utilize the information in execution traces to reduce the
number of tests runs for each product in a software product line.

3.2.2 SPL-based testing methods

SPL-based testing methods generate reusable test cases from software product
line requirements and use them to test products derived from the product line.
Three methods are presented [37] to generate tests from product line requirements
in the form of use cases, and then a coverage criterion is presented based on the
use case to apply the tests. A subsequent paper [38] deals with the problem of
defining and managing the relationship between the feature model and the tests by
a decision model. In this paper, the decision model that is used for feature
selection during product derivation is also used for selection and customization of
test cases.

The issue of how to make test-ready the models generated for a product line
in order to create reusable test cases for products derived from that product line
was also addressed [39]. In this article, the analysis models and requirements of a
product line developed with the PLUS method are prepared for testing. A test-
ready model contains enough information to automatically generate test cases
using one or more test strategies.

Reusable test cases can be generated during domain engineering [40, 41].
However, these methods are not model based and the test cases are derived from
the requirements described in natural language. Hartmann et al. [42] use the
activity diagram for the test model, which includes variability but test cases are
only generated in application engineering. Therefore the method is model based,
but does not consider the reuse of test cases. Finally, it is possible to not use test
models and yet have specifications that are structured and include variability [43].
Test cases for each product are created based on these specifications.

33

3.3 Reactive system model-based testing

Reactive systems are hardware and software systems with non-terminating
behaviors that interact with the external environment through visible events.
Communication protocols, web servers, processors, and operational systems can
be mentioned among these systems. Since the product lines of reactive systems
are considered in this research, we briefly mention here some of the work that has
been done so far in the field of model-based testing of such systems. Finite state
machines and labeled transition systems are both widely used to model reactive
systems. The concepts and definitions related to finite state machines and the
conformance test of these machines were explained earlier. Labeled transition
systems were introduced by Keller [44] and are used to model context-sensitive
systems (concurrent and sequential programs) as well as hardware circuits.

Input-output conformance (IOCO) test selection method is a formal, black-
box, and model-based testing method for testing functional behaviors. The
specification describes the input and output interactions of the system with its
environment as a labeled transition system.

The IOCO test method generates test cases based on the specification to
determine whether the implementation under test (i) conforms to its specification
(s) or not, or whether the relation 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is established or not.

Another method for model-based testing of reactive systems is to use UML
2.0 test profiles. While UML models focus primarily on the definition of system
structure and behavior, they provide only limited means for describing test
objectives and test procedures. In 2001, a consortium was built by the Object
Management Group (OMG) in order to develop a UML 2.0 profile for the testing
domain. A UML profile provides a generic extension mechanism for building
UML models in particular domains. The UML 2.0 Testing Profile (U2TP) is such
an extension which is developed for the testing domain. It bridges the gap
between designers and testers by providing means to use UML for both system
modeling and test specification. This allows a reuse of UML design documents
for testing and enables test development in an early system development phase.
The UML 2.0 Testing Profile provides concepts to develop test specifications and
test models for black-box testing. Four concept groups are introduced in the
profile, and they cover the following areas: test architecture, test behavior, test
data, and time [8].

34

3.4 Conclusions so far

In this thesis, we focus on modeling the reactive software product line by means
of a finite state machine that is, a formal method. As mentioned, modeling with a
labeled system is also one of the formal methods for describing the behavior of
reactive software. However, due to the fact that in the ioco testing method an
infinite number of tests are produced using LTS describing the specifications of
the system, using labeled transition system is not suitable for our approach.
Indeed, FSM testing theory is finite, and we exploit this in the evaluation of our
method, where the quantity of test cases is important.

Due to the structural similarity of the finite state machine to the labeled
transition system, we start from a previously developed method [25] to apply
variability to finite state machines. Therefore in this thesis the entire software
product line is modeled by a finite state machine labeled with features.

35

Chapter 4

Proposed method

4.1 Introduction

A product line allows producing products with common features. These features
can be used in the design and implementation of these products. That is, instead of
designing and implementing each product separately, we can use the common
points of these products, and design and implement the product line. In this thesis
we want to take advantage of the similarity of the products while testing the
software product line. This way, we provide a method that produces the test cases
required for testing all the products of that product line, based on the specification
of the entire product line and according to the similarities and change points. In
fact, using this method we obtain reusable test cases.

We use a small product line as a running example, designed to provide a
better understanding of the method by applying the proposed test method to it.
The description of this product line follows. The behavior of the product line is
modeled with a finite state machine. However, it is necessary to use an extended
type of finite state machine. The description of this extended finite state machine
and how to model variability with it is given in Chapter 2.

4.1.1 Running example

In order to better understand the steps of the test method presented in this
research, the beverage vending machine product line is introduced as a running
example. The feature model of this product line is shown in Figure 4.1. In the
specifications of this product line, we assumed that milk is only served with
coffee. We apply this condition with the relationship M requires C. It should also
be noted that any machine that serves tea certainly serves plain tea. Feature F is
related to serving free soda and it excludes features T and C. This means that a
machine that can serve free drinks only serves soda.

36

Figure 4.1 Feature model of, the beverage vending machine product line

The initial version of the drink machine delivers a soda upon receiving a coin
and then goes back to receiving orders. The modeling of this drinking machine
with a finite state machine is shown in Figure 4.2 (a). Among the other features
that can be added to this initial version are serving tea and coffee. This machine
receives a coin and returns cack as an output as confirmation of receiving the
coin. From there, it may serve soda, tea, or coffee, depending on the desired
configuration feature. To order coffee, another coin must be given to the machine.
After requesting coffee, the customer can request milk to be added to the drink.
The machine with the possibility of serving coffee with milk and/or sugar is
modeled in Figure 4.2 (c).

37

Figure 4.2 Beverage vending machines, modeled with finite state machines

4.2 Product line behavior modeling

In this thesis we intend to produce reusable test cases. That is, from the
specifications of the entire product line generate a set of test cases which will be
used to test each product from the product line. For this purpose, the behavior of
the entire product line must first be described by means of an extended finite state
machine. For this, we consider the earlier idea of modelling the product line using
a featured transition system [25]. We saw more details about this method in

38

Chapter 3.
As we know, each function in a product line is related to a feature. In this

case, any product that has that feature has the corresponding function. To
illustrate this, we label each edge of the machine describing the product line with
its corresponding feature. In fact, the machine we designed for modeling in this
research is a featured finite state machine (F2SM). This machine is formally
introduced as follows.

Definition 4.1 Featured finite state machine
An F2SM, is a tuple in the form of f = (I, O, S, δ, λ, d, γ, Prio), so that we have:

• (I, O, S, δ, λ) is a finite state machine
• d is a feature model (see Section 2.4.3.1)
• γ : δ → F is a function, labeling transitions with features
• Prio ⊆ δ × δ Specifies the priority between some transitions

The finite state machine which is part of the F2SM models all possible
functions of all products in the product line. d is the feature model of the product
line from which all valid configurations can be derived. F is the set of all the
features and MF is the set of mandatory features. The set VC (which stands for
Valid Configurations) contains all the valid configurations that can be extracted
from the feature model. The function γ labels each transition of the finite state
machine with its corresponding property. This function is surjective because for
every feature in F there is at least one transition labeled with that feature. Also,
because more than one transition can be labeled with the same attribute, the
function is not injective.

Defining the priority relation between transitions is used to apply conditions
or to consider some assumptions about the products of the product line. Priority
can be defined between two transitions tr1 and tr2 that have the same initial state
and are labeled with different attributes f1 and f2, respectively. If it is (tr1, tr2) ∈
Prio, then the priority of transition tr1 is higher than tr2, and transition tr2 would
be removed from any product that has both features f1 and f2. It should be noted
that a priority must be defined between two transitions that have the same origin
and input but are labeled with different features. In this case, in the products that
include both features, one of the two transitions is removed and the deterministic
property of the finite state machine of the product is preserved. As we know, in
applying the W test method the finite state machine describing the characteristics

39

must be deterministic and completely specified. In the method presented in this
research, which is a modification of the W method, it is necessary to establish
these conditions. The F2SM that describes the specifications of the product line is
called MS. In order to label each transition in MS with its corresponding feature we
obtain the set of input symbols of the machine, from the product of the set I with
the features set F. In order for the machine to be completely specified, it is
necessary to add a new output error to the set of output symbols and an additional
state called ser to the set of states. The output of the transitions in which the input
is not labeled with its corresponding feature is error and goes to ser state.

Figure 4.3 shows the F2SM describing the beverage vending machine product
line. For convenience, transitions with error output and into ser are not shown. For
example, the output transitions from s0 with input from the set I × F − {(V, coin),
(F, sodareq)} all go to ser and produce the error output. As it can be seen, the

priority of transition 𝑠𝑠0 →
(𝐹𝐹,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)

𝑆𝑆6 is higher than 𝑆𝑆0 →
(𝑉𝑉,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)

𝑆𝑆1, so in any

product where the feature F is present the transition 𝑆𝑆0 →
(𝑉𝑉,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)

𝑆𝑆1 is removed
(note in passing that V is present in all products). The definition of this priority
makes it possible to serve free soda in products that have the F feature. We know
that implicitly there is a relation of need between the features of the child and the
parent. Therefore, we also added the requirement relations between N and L
features with their parent T, to the set of requirement relations.

As mentioned earlier, each configuration is a set of features. To obtain the
characterization machine of a configuration, we remove those edges from the
F2SM of the product line which are labeled with features not present in that
configuration. We also remove edges with lower priority if necessary. In this case,
some states may no longer be available from the initial state, and the machine
may not be minimal any longer. Therefore, by removing the unreachable states
and then obtaining the equivalent minimized machine, we reach the finite state
machine for the desired configuration. The finite state machine for configuration
C is called MS [C].

40

Figure 4.3 Finite state machine describing the beverage vending machine product
line

4.3 Modified test method

The transition cover set and separating set are two basic sets used in the W test
method. So, in order to change thi–s method for use in testing the software
product line, we must change the algorithms for constructing these two sets. We
will address this issue in the next two sections. In the next section, we first
explain the algorithm for obtaining the separator set to be used in the test method.
Then we prove the correctness of the proposed algorithm and finally apply it on
the example mentioned in the previous section.

4.3.1 Set of separating sequence

In the process of obtaining the finite state machine of a product, some transitions
are removed from the original machine. Sequences from the separating set W that
contain at least one of these transitions are also removed from the set. The
remaining sequences must form a separating set for the finite state machine of the
product. For this purpose, the main separating set, which is obtained from the
characterization machine of the entire product line, should be such that it has a

41

separating sequence for each of the two separate states in every possible
configuration. The set W is formally defined below. Before that, two other
concepts that are used in this chapter are also defined.

Definition 4.2 The set F for a sequence x contains the features that label exactly
all the transitions of the sequence x.

Definition 4.3 If A is a set of sequences and C is a configuration, then the set A\C
is obtained by removing the sequences of the set A that contain transitions labeled
with features not present in C. In other words,

A \ C = {x ∈ A | Fx ⊆ C}

Definition 4.4 The set W is a separating set for Ms if, for every valid
configuration C, W \ C is a separating set for MS [C].

For two distinct states s and t in S all the separating sequences with possible
different feature sets must be included in W. Consequently, for every valid
configuration C, and for any two distinct states s and t in SMS[C] (the set of
machine states MS [C]), there will be at least one separating sequence in W \ C. If
in the process of constructing W \ C all the separating sequences for s and t are
removed and there is no separating sequence for these two states in W \ C, then
these states are equivalent, and in the minimization stage of the machine
constructing process MS [C] must be merged into one state.

As we know mandatory features are part of any valid configuration.
Therefore, a separating sequence of two states s and t, labeled only with
mandatory features is sufficient to distinguish between these two states in any
configuration. To build the set W for MS we need to obtain the separating
sequences for all pairs of distinct states in MS. Algorithm 4.1 obtains the set of the
shortest separating sequences for two states s and t and returns it in the Sep set.
This algorithm is an extension of the algorithm for obtaining the shortest
separating sequence for two states presented and proved elsewhere [8].

42

Algorithm 4.1 Function of constructing all separating sequences of two distinct
states
SSM (s, t: state):

1. Partition the set of states i.e., SMS, into equivalence classes ρ
2. Let Sep set equal to the empty set
3. Find the smallest index i such that s and t belong to different blocks of ρi
4. If i is equal to 1, add each a ∈ I for which it is λ (s, a) ≠ λ (t, a) to Sep
5. Otherwise, for each a ∈ I where δ (s, a) and δ (t, a) belongs to different

blocks of ρi−1, add a.SSM (δ (t, a), δ (s, a)) to Sep
6. Return Sep as the result

Example 4.1 We partition the set of states of the VM machine in Figure 4.3 in the
manner described in Section 2. Each state in ρ1 is placed in a separate class. So,
for distinct states, the smallest i index is equal to 1, and as a result, the shortest
separating sequences are 1 in length. For s0 and s2 all inputs except (V, coin), (F,
sodareq) and (C, cofreq) lead to the same error output. So, we have:

SSVM (s0, s2) = {(V, coin), (F, sodareq), (C, cofreq)}

Similarly we have

SSVM (s2, s5) = {(C, cofreq), (T, plain), (N, cinnamon), (L, lemon)}

By obtaining SSM (s, t) we can find the separating sequences of these two
states that should be included in the W set. We call the set of these separating
sequences, which must be in W, Qs,t. The process of constructing Qs,t is that we
first set it equal to SSM (s, t) and then remove the unnecessary and redundant
sequences from it. The formal definition of the set Qs,t and the method of
obtaining it are given below.

Definition 4.5 The set Qs,t for two states s, t ∈ S is a set of input sequences such
that for every valid configuration C such that s, t ∈ S (MS [C]), there exists an
input sequence x ∈ Qs,t such that λ (s, x) ≠ λ (t, x) and Fx ⊆ C.

As mentioned earlier, if the two states s and t have a separating sequence with
all transitions labeled with mandatory features, the presence of this separating
sequence in W is sufficient to distinguish these two states in any configuration.

43

This case is handled in the first step of the Qs,t construction algorithm below. If
there are multiple separating sequences labeled with the same feature set in SSM
(s, t), only one of them is enough to be included in Qs,t. Which of these sequences
is better to include depends on the conditions explained below. The cost of the
test depends on the number of test cases and their length. Therefore, in choosing
separating sequences we should keep in mind the number and length of separating
sequences in the W set should be minimized.

The set of separating sequences for pairs of states can have commonality. So
in the construction of Qs,t, when choosing between separating sequences x and y
with the same features we choose the sequence that appears in the largest number
of sets Q that have been computed up to that point. We thus try to minimize the
number of members of the W set, which also affects the number of test cases. If
the number of sets Q containing x and y are the same, the selection is made based
on the length of the sequences. This means that the sequence with a shorter length
remains in Q and causes the longer sequence to be removed. This way we try to
keep the sum of the length of separating sequences in W to a minimum. In fact,
the process of using the commonality of Q sets to select the desired separating
sequence uses product commonality and similarities, which makes the test items
reusable. Additionally the relation requires also needs to be considered. If the
relation f1 requires f2 holds in a product line, then there is no valid configuration
of this product line that contains f1 but does not contain f2. In other words, every
valid configuration that contains f1 also contains f2. The requires relation can be
used to reduce the number of separator sequences in the Q sets. Suppose that x
and y are two separating sequences for s and t. We know that Fx and Fy are
respectively the sets of features that the transitions of sequences x and y are
labeled with. If any feature is present in Fy, or in Fx, or there is a feature in Fx that
requires it, x can be removed from Qs,t. This can be expressed formally as
follows.

∀ f1 ∈ Fy − Fx, ∃ f2 ∈ Fx such that f2 requires f1 → discard x from Qs,t

By subtracting Fx from Fy, we discard features of y that are also in x and
examine the remaining features. Establishing the above condition leads to the fact
that in any configuration where the sequence x is present, sequence y is also
present. So the presence of x in the set of separating sequences creates
redundancy. It should be mentioned that, if x includes other features in addition to

44

the same features as y, and these features are in the requires relation with the
features of y, then there is no problem in removing it. Nevertheless, the existence
of x implies the existence of y. However, the opposite is not true. This means that
if y has more features in addition to the same features as x or that are in the
requires relation, then we cannot remove the sequence of x from Qs,t. Because
sequence y does not exist in the configuration that does not contain these
additional features, it should not cause the removal of x. All these points are taken
into account in Algorithm 4.2.

Consider two transitions tr1 and tr2 with the same origin state, labeled with
features f and g, respectively. Suppose (tr1, tr2) ∈ Prio. So in any configuration C
such that f, g ∈ C, the transition tr2 is removed from the configuration due to its
lower priority. Therefore, in Algorithm 4.2, if we pass through the transition tr2
by applying the sequence x to s or t, then x cannot cause the removal of another
sequence, because it is not present in some configurations which also include Fx.
Therefore, before deleting a sequence, we must always check if the sequence that
caused it to be deleted has a lower priority (than another) If this is the case then
we will prevent the removal of the sequence. There is one exception namely,
when the sequence to be deleted also includes the same transition with low
priority (i.e., tr2). In this case we can perform the removal. This condition must
be also observed in Algorithm 4.3 which is used for the construction of the
transition cover set.

The HasLowerPriorityTransition function, which is used in Algorithms 4.2
and 4.3 receives a state and a sequence and determines whether by applying that
sequence to the given state the machine passes through a low priority transition.

Algorithm 4.2 Constructing the set of required separating sequences for s and t
Function GenerateQ (s, t: state) {
 Let Qs,t = SSM (s, t)
 For every separating sequence x ∈ Qs,t {
 Let xLowPrio = HasLowerPriorityTransition (s, x) ∨
HasLowerPriorityTransition (t, x)
 If Fx ⊆ MF ∧ ¬ xLowPrio, then let Qs,t = {x} and return Qs,t
 If ∃y ∈ Qs,t such that Fx = Fy, then {
 Let yLowPrio = HasLowerPriorityTransition (s, y) ∨
HasLowerPriorityTransition (t, y)
 If |{Qs′,t′ | s′, t′ ∈ S ∧ y ∈ Qs′,t′}| > |{Qs′,t′ | s′, t′ ∈ S ∧ x ∈ Qs′,t′}| then

45

 If ¬ yLowPrio then Let Qs,t = Qs,t − {x}
 Else If ¬ xLowPrio then Let Qs,t = Qs,t − {y}
 If |{Qs′,t′ | s′, t′ ∈ S ∧ x ∈ Qs′,t′}| > |{Qs′,t′ | s′, t′ ∈ S ∧ y ∈ Qs′,t′}| then
 If ¬ xLowPrio then Let Qs,t = Qs,t − {y}
 Else If ¬ yLowPrio then Let Qs,t = Qs,t − {x}
 } (end of If)
 If ∃y ∈ Qs,t such that ∀f ∈ Fy − Fx, ∃f′ ∈ Fx such that f′ requires f then {
 Let yLowPrio = HasLowerPriorityTransition (s, y) ∨
HasLowerPriorityTransition (t, y)
 If ¬ yLowPrio then Let Qs,t = Qs,t − {x}
 } (end of If)
 } (end of For)
 return Qs,t
}

For a better understanding of the above algorithm we use it on the beverage
vending machine product line.

Example 4.2 Consider the two states s2 and s5 of the machine from Figure 4.3. In
Example 4.1 we obtained the set of all the shortest separating sequences of these
two states.

SSVM (s2, s5) = {(C, cofreq), (T, plain), (N, cinnamon), (L, lemon)}

Since N requires T and L requires T, according to Algorithm 4.2 (N,
cinnamon) and (L, lemon) are removed from the set of necessary separating
sequences, and as a result, we have:

Qs2,s5 = {(C, cofreq), (T, plain)}

For s0 and s2 on the other hand, we had SSM (s0, s2) = {(V, coin), (F,
sodareq), (C, cofreq)}. In order to obtain Qs0,s2 we note that the output transition
from s0 with input (V, coin) has a lower priority than the transition with input (F,
sodareq), and therefore, the separating sequence (V, coin), although labeled with
the mandatory feature, cannot cause the removal of another sequence, so we have:

Qs0,s2 = {(V, coin), (F, sodareq), (C, cofreq)}

46

Input (V, sodareq) has an output other than error only when exiting state s1,
s0 (V, sodareq) is a separating sequence for s1 from any other state. Furthermore,
since F (V, sodareq) = {V}, we have:

∀ t ∈ SVM (t ≠ s1) · Qs1,t = {(V, sodareq)}

Now we have to check whether Qs,t constructed by Algorithm 4.2 conforms
to the Definition 4.5. This is accomplished by the following lemma.

Lemma 4.1 For each valid configuration in the software product line, and for any
distinct states s and t in the finite state machine describing that configuration,
there is an input sequence in Qs,t as computed by Algorithm 4.2 that is a
separating sequence for those two states, and all its features exist in the
configuration. We formally have:

∀C ∈ V C, ∀s,t ∈ Min (Ms[C]) ⇒ ∃x ∈ Qs,t · x ∈ SSM (s, t) ∧ Fx ⊆ C

Proof. The proof is by contradiction. Suppose there is a configuration for which
there is no sequences in Qs,t that has the two condition x ∈ SSM(s, t) and Fx ⊆ C.
That is,

∃C ∈ V C, ∃s, t ∈ Min (Ms[C]) ∄ x ∈ Qs,t · x ∈ SSM(s, t) ∧ Fx ⊆ C

We know that both s and t in the finite state machine of any configuration C
have a separating sequence with its features available in that configuration
(otherwise the two states would be equivalent). This means that

∀C ∈ V C, ∀s, t ∈ Min (Ms[C]) ⇒ ∃x ∈ SSM (s, t) · Fx ⊆ C

From here, several situations arise:
• If the features that the transitions of sequence x are labeled with are all

mandatory features, and the sequence x starting from s and t, does not
include transitions with low priority, then in Algorithm 4.2 we will have
Qs,t = {x}. On the other hand, for every valid configuration C we have MF
⊆ C. So Fx ⊆ C, and as a result, a contradiction.

• If there is a sequence y ∈ Qs,t with Fx = Fy, the sequence x in Algorithm
4.2 can be removed from Qs,t. We know that Fx ⊆ C and Fx = Fy, therefore
we have Fy ⊆ C. So there is a sequence y in Qs,t whose feature set is a

47

subset of C. Also, since Qs,t = SSM (s, t) is placed first, then all the existing
sequences in Qs,t are separating sequences of s and t. As a result, the
assumption is once again violated.

• Sequence x may be omitted in Algorithm 4.2, if there is sequence y in Qs,t
such that for every f in Fy − Fx, there is an f′ in Fx that the relation f′
requires f is established. According to the definition of this relation, if f′ is
in C, f will also be a member of C. Therefore the features of y that are not
in Fx are also members of C. So, all the features of sequence y are in
configuration C and as a result, again a contradiction. ■

In the last two cases in the proof we determined that even if x is removed
from Qs,t, there is still a sequence in it that matches the intended conditions. By
obtaining the set Q for all the distinct states in the F2SM describing the software
product line, we can construct the set of separating sequences W for each
configuration. The algorithm to obtain this set is given in Section 4.3.3
(Algorithm 4.6). In the next section we will discuss how to construct the transition
cover set.

4.3.2 Transition cover set

In this section we obtain the transition cover set (abbreviated P) for the model
describing the entire product line, MS. Having P, one can obtain the transition
cover set for each product. As mentioned before, for each s ∈ S and each a ∈ I in
MS there is a transition from s with input symbol a. Therefore, Definition 2.4 of
Chapter 2 can be rewritten as follows: The set of input sequences P is a transition

cover set for the finite state machine M, if for each transition s
𝑎𝑎
→ there exist

sequences x, y ∈ P such that x = y.a and δ (s0, y) = s.
We know that the transition cover set is closed under prefix. In the following

we can see that the proposed algorithm for constructing the set P preserves this
property. The formal definition of the transition cover set for the product line is
given below.

Definition 4.6 The set of input sequences P is a transition cover set for MS if, for
every valid configuration C, P \ C is a transition cover set for the finite state
machine describing C, i.e., MS [C].

To obtain the set P we need to find the necessary sequences to cover each

48

transition. For each configuration and for each transition in which that
configuration appears we want to have at least one sequence in P that covers that
transition (that is, starts from the initial state and ends with that transition). In
order to build these sequences we first obtain sequences with different sets of
features that end at the origin of each transition. Algorithm 4.3 describes the
method of obtaining these sequences for each state. After executing this
algorithm, for each state S we have a set needPath(S) of sequences with different
features, each of which constituting a path from the initial state to state S.

In order for the prefix property to be established in the set P, it is necessary
that the union of these sets on all states of the machine have the prefix property.
That is, if the sequence x is in needPath(s), then every prefix of x must be in
∪𝑡𝑡∈𝑠𝑠 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ(𝑡𝑡). In order to establish this property we traverse the finite state
machine in a breadth-first order.

Algorithm 4.3 Building needPath for all finite state machine states
Function GenerateneedPaths(){
let L = 0 ∧ ReachedStates = ∅ ∧ needPath(s0) = {ϵ}
do the steps below, until needPath(s) does not change for any s:
 if L equals 0, then for each outgoing transition from s0: tr do
 if the output symbol of tr not equals error then {
 let ns = destination state of tr
 add transition symbol of tr to needPath(ns)
 add ns to ReachedStates
 }
 if L is greater than 0, then
 for each state st, in ReachedStates and for each outgoing transition from st: tr
 let tsym = transition symbol of tr
 let ns = destination state of tr
 if the output symbol of tr not equals error then
 for each path p of length L in needPath(st), do
 if p has not passed the state ns, then add p.tsym to needPath(ns)
 }
 for each state s in ReachedStates
 let selectedPath(s) = ApplyConstraints(needPath(s))
 for each path p in needPath(s) − selectedPath(s) do {
 remove p from needPath(s)

49

 for each path p′ in needPath(t) · (t ≠ s) do
 if p is a prefix of p′ then remove p′ from needPath(t)
 }
}
Function ApplyConstraints(needPath(s)) {
 Let selectedPath(st) = ∅
 Foreach path p in needPath(st) do
 If Fp ⊆ MF ∧ ¬ HasLowerPriorityTransition(s0, p) then
 Let selectedPath(st) = {p} and break the loop
 If ∃p′ ∈ needPath(st) such that Fp = Fp′ then {
 If |p| ≤ |p′| then
 If ¬ HasLowerPriorityTransition(s0, p) then add p to selectedPath(st)
 Else If ¬ HasLowerPriorityTransition(s0, p′) then add p′ to selectedPath(s
 Else Let selectedPath(st) = selectedPath(st) ∪ {p, p′}
 Else
 If ¬ HasLowerPriorityTransition(s0, p′) then add p′ to selectedPath(st)
 Else If ¬ HasLowerPriorityTransition(s0, p) then add p to selectedPath(st)
 Else Let selectedPath(st) = selectedPath(st) ∪ {p, p′}
 }
 If ∃p′ ∈ needPath(st) such that ∀f1 ∈ Fp′ − Fp, ∃f2 ∈ Fp such that f2 requires f
 ∧ ¬ HasLowerPriorityTransition(s0, p′) then add p′ to selectedPath(st)
 return selectedPath(st)
}

Variable L indicates the level to which the machine has been traversed. To
build the needPath sets, we start from level zero that is, state s0, and for each

output edge from this state s0
(𝑓𝑓,𝑎𝑎)
�⎯� t that does not have an output error

(𝑓𝑓,𝑎𝑎)
�⎯� we add

(f, a) to needPath(t). We also add state t to the set ReachedStates. In fact, at each
stage, we add new seen states to this set. Then we increment L and go to the next
level. Now let's assume that we have proceed to level k that is, L = k. For every

state s ∈ ReachedStates and its every output transition s
(𝑓𝑓,𝑎𝑎)
�⎯� t that has no error

output
(𝑓𝑓,𝑎𝑎)
�⎯� we consider every path p in needPath(s). If the destination state of this

route is at level k of the machine (or in other words, p has passed k transition) and
also P has not passed state t, we add the path p.(f, a) to the paths necessary to
reach t, i.e. needPath(t). In fact, each time we add the paths of length k + 1 that do

50

not have loops and are the continuation of the paths we found on the previous
level, corresponding to their destination. This way we preserve the prefix property
in the union of the needPath sets. Additionally, if ReachedStates does not contain
state t, we include this state in that set as well. At the end of the loop, after the
needPath sets have been updated, they are also checked by the ApplyConstraints
function in a way similar to the three conditions mentioned in Algorithm 4.2, and
unnecessary paths are removed. It should be noted that by deleting a path, all the
paths in each needPath that are the suffix of this path should also be deleted. The
algorithm terminates as soon as no needPath set is updated. In other words, the
execution of the loop continues as long as needPath(s) changes for at least one s ∈
S.

Recall that the ApplyConstraints function removes unnecessary paths and
returns the rest in the selectedPath set. When choosing between two paths p and
p′ with the same set of attributes in needPath(s), we use the length criterion. That
is, if the path p is shorter and does not include any transition with low priority, it
can cause the deletion of p′ and so only p is added to the set of selectedPath(s).

Lemma 4.2 For each valid configuration in the software product line, and for
each state s in the finite state machine describing that configuration, there is a
path in needPath(s) that contains all the feature of the configuration. Formally,

∀C ∈ VC, ∀s ∈ Min (Ms[C]) ⇒ ∃p ∈ needPath(s) · Fp ⊆ C

Proof. The proof is once again by contradiction: Suppose there is a configuration
for which there is no path in needPath(s) that satisfies condition Fp ⊆ C:

∃C ∈ VC, ∃s ∈ Min (Ms[C]) ∄p ∈ needPath(s) · Fp ⊆ C

We then are in one of the following situations:
• If all the transitions of the path p are labeled with mandatory features and

also the path p starting from the initial state does not include transitions
with low priority, then in Algorithm 4.3 we will have needPath(s) = {p}.
On the other hand, for every valid configuration C we have MF ⊆ C and
so Fp ⊆ C. The assumption is thus violated.

• If a path p′ of length shorter than p and Fp = Fp′ in needPath(s) exists and
p′ does not include a low-priority transition, then p is deleted based on the

51

existence of p′. But the presence of p′ with Fp′ ⊆ C in needPath(s) violates
the assumption.

• Path p may be omitted in Algorithm 4.3, if there exists a path p′ in
needPath(s) such that for every f′ in Fp′ − Fp, there is an f in Fp such that
the relation f requires f′ holds. According to this relation, if f is in C, f′ will
also be a member of C. Therefore the features of p′ that are not in Fp are
also members of C. That is, all features of path p′ are in configuration C
and as a result the assumption is violated. ■

Example 4.3 We want to construct needPath(s) for each state s ∈ SVM. At the
beginning of Algorithm 4.3, the value of variable L is zero, and with one
execution of the loop, we have:

needPath(s1) = {(V, coin)}, needPath(s6) = {(F, sodareq)}

In the next execution of the loop, (V, coin).(V, sodareq) is added to
needPath(s6), and although both transitions of this sequence are labeled with the
mandatory feature V, it cannot eliminate the sequence (F, sodareq), because it

includes the transition with low priority s0
(𝑉𝑉,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)
�⎯⎯⎯⎯� s1. We also have:

needPath(s2) = {(V, coin).(C, coin)} , needPath(s5) = {(V, coin).(T, teareq)}

At L = 2 in the execution of the function ApplyConstraints the sequences (V,
coin).(T, teareq).(N, cinnamon) and (V, coin).(T, teareq).(L, lemon), which were
added to needPath(s4) at the beginning of the loop are removed due to the
existence of the sequence (V, coin).(T, teareq).(T, plain) and the relations N
requires T and L requires T. It is worth noting that because all three sequences

contain the low-priority transition s0
(𝑉𝑉,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)
�⎯⎯⎯⎯� s1, deletion is possible.

Finally, at L=5, the needPath sets are completed and fixed for all states and
the algorithm terminates. The sets needPath for states s1, s2 and s5 remain
unchanged from earlier. For the other states we have:

needPath(s3) = {(V, coin).(C, coin).(C, cofreq)}
needPath(s4) = {(V, coin).(C, coin).(C, cofreq).(M, mreq), (V, coin).(T, teareq).(T,

plain)}
needPath(s6) = {(V, coin).(V, sodareq), (F, sodareq)}

52

After executing Algorithm 4.3 and constructing the sets needPath(s) for each
s ∈ S we can obtain the transition cover set for the finite state machine MS that
describes the specifications of the product line. Algorithm 4.4 shows how to build
this set.

Algorithm 4.4 Building the transition cover set for the product line specification
machine
Function GeneratePSet() {
 Let PSet = ∅
 For each state s ∈ S do
 For each path p ∈ needPath(s) do
 If ∃p′ ∈ needPath(s) such that Fp′ ⊆ Fp then remove p from needPath(s)

 For each transition tr : s
(𝑓𝑓,𝑎𝑎)
�⎯� t in MS do

 If the output symbol of tr not equals error then
 Add needPath(s).(f, a) to PSet
Add the empty string ϵ, to PSet
}

At the beginning of the algorithm for each state s the paths inside needPath(s)
are checked and if possible a number of unnecessary paths are removed. Suppose
the paths p and p′ are two paths from s0 to s, which were placed in needPath(s) by
Algorithm 4.3. Path p is considered unnecessary and can be omitted if Fp′ ⊆ Fp.
Indeed, in this case for every configuration C where the path p is in MS [C], p′ will
also exist in that machine. We know that Fp′ ⊆ Fp, so whenever Fp ⊆ C then it
will also be the case that Fp′ ⊆ C. Overall, the membership of p in needPath(s) is
not necessary. We must note that the reverse is not true. That is, there can be a
configuration whose machine contains p′ but does not contain p. So, the presence
of p′ in needPath(s) is required.

After making the necessary changes in the needPath sets the transition cover

set can be obtained. For each transition tr: s
(𝑓𝑓,𝑎𝑎)
�⎯� t we add the necessary paths to

reach s with the input symbol of the transition and add it to the transition cover
set. In fact, needPath(s).(f, a) is the set of necessary paths, to cover the transition
tr in the entire product line. Since for every valid configuration C of the product
line there is at least one path to s in needPath(s) that appears in the specification
machine of this configuration, then we can be sure that in the set P for every

53

configuration and for each transition there is at least one sequence that represents
the path that covers that transition.

Example 4.4 For the transition s6
(𝑉𝑉,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)
�⎯⎯⎯⎯⎯� s0 and given needPath(s6), the

sequences (F, sodareq).(V, ready) and (V, coin).(V, sodareq).(V, ready) are added
to the set P and cover this transition. Similarly, the necessary sequences to cover

s4
(𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)
�⎯⎯⎯⎯� s6 transition are:

(V, coin).(C, coin).(C, cofreq).(M, mreq).(S, sreq) and (V, coin).(T, teareq).(T,
plain).(S, sreq)

Having the needPath sets from Example 4.3, we can also obtain the
sequences needed to cover other transitions from the machine of Figure 4.3 and
form the transition set for the beverage vending machine product line model.

4.3.3 Testing the software product line

Having a set of separating sequences and a set of transitions, it is now possible to
test the software product line. We will reuse the obtained sets in the test of all
products. We know that in order to create test sequences for each product we must
have the sets of separating and transition cover sequences. We want to extract
these sets from the sets of separating and transition cover sequences that we built
for the entire product line. We denote the sets of separating and transition cover
sequences for configuration C by W [C] and P [C], respectively.

4.3.3.1 Extracting the transition cover set for a product

Algorithm 4.5 extracts the transition cover set for each valid configuration of the
product line from the set P that we constructed in Section 4.3.2. We defined a set
named ConfigP and set it equal to P at the beginning. To obtain the transition
cover set for configuration C we need to have the transitions in the configuration.
We define a set called Transitions, which is initially equal to the set of all
transitions in the machine describing the entire product line i.e., Ms, and then we
remove transitions from it during several steps. As we saw earlier, a priority may
be defined between transitions that exit the same state but are labeled with
different attributes. Depending on the configuration features, transitions with
lower priority may be omitted. If the features tagged with two lower and higher

54

priority transitions are both present in C, the lower priority transition will not
appear in the configuration, so, we remove these transitions from the Transitions
set. Also, sequences that contain these transitions should not appear in the
transition cover set, so we remove them from ConfigP.

The next step in arriving at the transition cover set for configuration C is to
discard sequences from the set P that contain at least one transition labeled with a
feature other than the features of C; these sequences should be removed from
ConfigP. We then remove the transitions in Transitions which are not covered by
any sequence in ConfigP. The remaining transitions in Transitions form the set of
configuration transitions C.

We constructed the set P for the entire product line in such a way that for
each transition it contains sequences that cover that transition in different
configurations (which contain that transition). So for each transition there may be
more than one sequence in P. Also, due to the existence of commonality between
configurations, in extracting the transition cover set for a configuration, there may
also be transitions that are covered by more than one sequence in ConfigP. We are
ready to remove these extra sequences. As mentioned earlier, the shorter the
length of the test sequences, the lower the cost of the test. So we use the length
criterion to remove the extra sequences. Algorithm 2.2 in Chapter 2, which builds
the transition set in the W test method, also uses the idea of the shortest length.
This algorithm constructs the test tree by traversing breadth-first the finite state
machine. Then it obtains the machine transition set by extracting partial paths
from this tree. Due to the breadth-first traversal, the sequence chosen to cover
each transition is the shortest possible sequence. Here, we also choose the shortest
sequence among the sequences covering a transition. We also choose the
sequence with shorter length among the sequences covering a transition. The loop
at the end of Algorithm 4.5 is responsible for this task. After executing this
algorithm, P[C] will contain the necessary sequences to cover the configuration
transitions of C.

Algorithm 4.5 Extraction of transition cover set for configuration C
Function DeriveConfigPSet() {
 Let ConfigP = P
 Let Transitions = the set of all transitions in Ms

 Foreach pair of transitions (s
(𝑓𝑓,𝑎𝑎)
�⎯� t, s

(𝑔𝑔,𝑏𝑏)
�⎯� t′) ∈ Prio do

 If f ∈ C and g ∈ C then {

55

 Remove sequences containing the transition s
(𝑔𝑔,𝑏𝑏)
�⎯� t′ from ConfigP

 Remove s
(𝑔𝑔,𝑏𝑏)
�⎯� t′ from Transitions

 }

 Foreach sequence sc in ConfigP do

 If sc contains a transition tr : s
(𝑓𝑓,𝑎𝑎)
�⎯� t such that f ∉ C then

 Remove sc from ConfigP

 Foreach transition (tr : s
(𝑓𝑓,𝑎𝑎)
�⎯� t) ∈ Transitions do

 If ∄sc ∈ ConfigP such that sc = x.(f, a) ∧ δ(s0, x) = s then
 Remove tr from Transitions
 Let ConfigTrans = Transitions

 Let P[C] = ∅
 While Transitions ≠ ∅ do {
 Let tr be a transition from Transitions
 Let sc ∈ ConfigP be the shortest sequence, covering tr
 Remove all of the transitions of sc from Transitions
 Add all of the prefixes of sc to P[C]
 }
}

Example 4.5 In the implementation of Algorithm 4.5 for a configuration of the
beverage vending machine product line with features V, C, T, M, and S the

transition s4
(𝑆𝑆,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)
�⎯⎯⎯⎯� s6 is not removed from the set of transitions. Among the

covering sequences of this transition obtained in Example 4.4, the sequence with a
shorter length, namely (V, coin).(T, teareq).(T, plain).(S, sreq), is selected and
placed in the covering set of this configuration along with its prefixes.

Before arriving at the correct idea of choosing the sequence to cover each
transition and removing redundant sequences (in the last loop of the algorithm),
we tried other ideas that were not successful because they did not keep the total
length of test sequences minimal. For instance, the two criteria by which
sequences were selected to be included in P [C] could have been (a) the greatest
commonality between the transitions of the sequence and the uncovered

56

transitions, and (b) the greatest commonality between the set of prefixes of the
sequence and the set of P [C] that has been built up to that point. We know that by
selecting any sequence from ConfigP and adding it to P[C] its prefixes should
also be added to this set. The second criterion aims to add fewer sequences to the
coverage set each time. In fact, by using the combination of these two criteria, we
tried to choose a sequence that includes a larger number of uncovered sequences
and also minimizes the increases in the number of sequences inside P [C]. For this
purpose, we used the product of these two criteria as the selection factor for the
next sequence. However, the problem of this approach comes from the fact that
the second criterion contradicts the first criterion. When we want to select a
sequence that has more prefixes already in P [C], then most transitions in the
sequence have already been covered.

4.3.3.2 Extracting the set of separating sequences for a product

After obtaining the transition cover set for the configuration, we proceed to
extract the set of separating sequences or W [C]. We know that in the process of
building a finite state machine for describing the characteristics of a product,
some transitions are omitted and the resulting machine may no longer be minimal.
More precisely, a number of states may no longer be accessible from the initial
state, and some states may become equivalent to each other. In order to construct
W [C], we must first determine all the states accessible from the starting state s0.
To obtain these states we use the transitions C from the ConfigTrans set. Recall
that this set is initialized in Algorithm 4.5. The source state of each of the
transitions in ConfigTrans is an accessible state out of s0. If the transition
destination state is not any transition source state, it will be equivalent to the ser
state. Reachable states are placed in a set called ReachableStates.

To recognize the equivalence of two states we use the set of their separating
sequences. Two states s, t ∈ S are equivalent in a configuration C if there is no
separating sequence in Qs,t whose property set is a subset of C. In other words,
these two states do not have a separating sequence in the description machine of
the specification C, so they are equivalent. We keep in the ReachableStates set
only one (arbitrary) representative of each equivalence class thus obtained.

First, we set W[C] to ∅. Then, for states s, t ∈ ReachableStates we select the
separating sequence x so that Fx ⊆ C from Qs,t and add it to W[C]. We must note
that there is a possibility of intersection between separating sets. As a result, there

57

may be s′, t′ ∈ ReachableStates such that x ∈ Qs′,t′. Therefore, there is no need to
further examine these pairs of states to choose the separating sequence. Algorithm
4.6 below shows the process of constructing the set W[C].

Algorith 4.6 Extracting the set of separating sequences for configuration C
Function GenerateConfigW() {
 Let ReachableStates = ∅

 For each transition (tr : s
(𝑓𝑓,𝑎𝑎)
�⎯� t) ∈ ConfigTrans do

 Let ReachableStates = ReachableStates ∪ {s}
 For each pair of states s, t ∈ ReachableStates do
 If ∄x ∈ Qs,t such that Fx ⊆ C then
 Let ReachableStates = ReachableStates − {s}

 Let W[C] = ∅
 Let markedPairs = ∅
 For each pair of states s, t ∈ ReachableStates do
 If (s, t) ∉ markedPairs then {
 W[C] = W[C] ∪ {x} · x ∈ Qs,t ∧ Fx ⊆ C
 Let markedPairs = markedPairs ∪ {(s, t)}
 If x ∈ Qs′,t′ · s′, t′ ∈ ReachableStates then
 Let markedPairs = markedPairs ∪ {(s′, t′)}
 }
 For each state s ∈ ReachableStates do
 If ∄x ∈ W[C] such that the output sequence λ (s, x) contains no error,
then
 Let W[C] = W[C] ∪ {(f, a)} such that (f, a) ∈ I and λ (s, (f, a)) ≠ error
}

It is possible that all separating sequences chosen to distinguish state s from
other states produce output sequence error. In this case, s cannot be distinguished
from ser, and it is necessary to add a separating sequence to W[C] to distinguish
these two states. For this purpose it is enough to choose a sequence which consists
of only one output transition from state s which has no error output. This review
and, if necessary, applying the required changes, is done at the end of Algorithm
4.6.

58

Example 4.6 Consider configuration C = {V, F} of the beverage vending
machine product line. Algorithm 4.2 will determine that that Qs0,s6 = {(V, ready)}.
Now we execute Algorithm 4.6. According to the transitions of this configuration,
s0 and s6 are known as accessible states from the initial state. Then (V, ready) is
placed in W[C]. In the last loop of the algorithm, in order to distinguish s0 from
ser, the sequence (F, sodareq) is also added to W[C].

59

Chapter 5

Evaluation

We will now compare our test method described in the previous chapter with the
original test method that is, the W method. For this purpose, we implemented both
methods in Java and conducted experiments to evaluate the proposed method.

5.1 Creating behavioral models of production lines

To compare the original and the new test methods, we first produced a number of
F2SM as models of product lines. The input parameters for the generator include
the number of states, the number of input and output symbols, the initial number
of transitions and the number of features. The result of running the program is a
file that stores the generated machine information in text form. According to the
initial number of transitions, we randomly select one source state and one
destination state each time. We randomly select the input and output symbols as
well as the feature that the transition is labeled with. As mentioned earlier, the
resulting finite state machine F2SM must be deterministic. We also know that the
transition input consists of a feature along with an input symbol. Thus, when
choosing the feature and input symbol for a transition we must pay attention that
there is no output transition from intended source state with that feature and input
symbol. For this purpose, it is necessary to add it to the list of available transitions
every time a transition is added to the machine, so that we can avoid
nondeterminism. It should be mentioned that if two transitions with the same
input symbol and different characteristics are generated for the same state, a
priority must be defined between those two transitions, again to avoid
nondeterminism. One of the factors in the evaluation of some results is the
number of transitions labeled with mandatory features. For this reason, the
possibility of determining the number of these transitions has been provided in the
product line model building program. It is also possible to determine the
maximum number of priorities defined between pairs of transitions.

60

5.2 Validation of the model

After creating the F2SM machine according to the above description we need to
check whether the machine meets the required conditions for testing (as
mentioned in Section 2). If this is not the case, we modify the machine. First, all
states should be reachable from the initial state. By performing a breadth-first
traversal on the machine we can find the unreachable states. For each such a state
we create a path of arbitrary length from the initial state to that state. Another
requirement is that the machine must be minimal. To check for minimality we
first create the ρ0, ρ1, ... sets, as described in Section 2. If the number of
equivalence classes thus obtained is equal to the number of machine states then all
classes are singletons and thus the machine is minimal. Otherwise, for each two
states in the same class we must add two transitions with different outputs to the
machine, so that their origin is the two states mentioned and their destination is
two states of different classes. As mentioned earlier, when adding a new
transition, we must pay attention to keep the machine deterministic. We now have
a minimal and deterministic finite state machine.

Finally, by determining the required features and defining requirement and
exclusion relations between some features we obtain the model of a hypothetical
production line. We know that there is an implicit relation between each feature of
a child and its parent. In order to apply this concept of the feature graph, in the
implementation of the methods, it is necessary to put each pair of features of the
child and the parent in the requirement relationship. Obviously this is not
necessary in cases where the parent feature is identical to the root feature, since
the root feature is present in all products. By having a set of features, their types,
and the relationships between them, we can easily obtain the set of valid
configurations.

5.3 Implementation of test methods

Now that we generated the production line model, it is time to apply our test
method. To create the separating sets we first implement Algorithm 4.1 presented
in Section 4, which obtains all separating sequences of two separate states. Then
we implement Algorithm 4.2, which determines the set of separating sequences
needed for all pairs of distinct states. We execute the implemented algorithm on
the finite state machine created earlier. Then, for each valid configuration we

61

execute Algorithm 4.6 and obtain the set of separating sequences for that
configuration.

We implement Algorithms 4.3 and 4.4 to produce the transition cover set for
the entire production line. By executing these algorithms on the machine
describing the entire production line we obtain a set from which the transition
cover set for each valid configuration can be extracted. For this purpose we
implement Algorithm 4.5 and execute it for each configuration. With the
transition cover sets and separating sequences the set of test sequences for each
configuration can be obtained by concatenating the two sets above.

To apply the original method, i.e., the W test method to the software
production line, we need to implement this method separately for each product in
the production line. First, we need to obtain the model describing the specification
of each product from the model of the whole production line. To achieve the finite
state machine of a product we remove those transitions from the finite state
machine of the product line that are labeled with features not present in that
product. We also remove transitions with lower priority Removing these
transitions may make some states unreachable from the initial state. In this case,
with a breadth-first traversal we can identify reachable states and thus remove the
remaining states. We then compute the equivalence classes of the states (as in
Section 2) and merge all the members in each class.

To implement the W test method, we need to generate the transition cover
sets and the separating sequences. Algorithm 2.2 should be implemented first to
obtain the transition cover set. Then, by extracting partial paths from the test tree
we form the transition set. Using the separating sequences and the transition cover
sequences we obtain the set of test sequences for the product.

5.4 Evaluation of the test method

To evaluate our test method we compare this method with the original method.
For this purpose, we created several F2SM, each describing a hypothetical
production line in the manner described above. Then, we applied the proposed test
method and the W method to each and obtained the test sequences for each
configuration of production line. We considered the improvement percentage of
the total length of the test sequences of all the products of each product line, as
well as the extraction time of these sequences as comparison criteria of the two
methods. Therefore, we considered the above two criteria in each of the two test

62

methods for each model of the production line. To make the results more accurate
we defined several F2SM with constant specification factors and calculated the
average criteria. We considered the number of states, the number of input and
output symbols, and the number of features as constant factors. Other
characteristics are different for each machine, including the total number of
transitions, the number of transitions labeled with mandatory features, the number
of pairs of features in a requirement relationship and the number of defined
priorities. Between 20 and 30 machines are defined in each category. Table 5.1
shows the results of applying the two test methods to the machines of each
category as an average.

Table 5.1 Comparison of two test methods with the average percentage
improvement of the total length of test sequences and test time.

Number of
states

Number of
features

Average percentage of
total length

improvement

Average percentage of
time improvement

20 10 -2.1% 27.5%
25 12 -1.25% 44.05%
30 15 -2.7% 47.93%
40 17 2.25% 52.17%
50 20 2.5% 61.3%

We can see that the average percentage of improvement in the total length of
the test sequences in each category, both negative and positive, is very small. This
indicates that the test sequences change very little in the proposed method
compared to the original method. We know that in extracting the transition cover
sets and separating sequences for a product in the proposed test method a number
of sequences are removed from the P and W sets produced for the entire product
line. The method of removal is such that it tries to keep the mentioned set
minimal. However, the sets generated by the two test methods for the same
product are not necessarily identical. This is because the transition cover sets and
separating sequences for one machine are not unique. In Algorithm 2.2 the order
in which the nodes are traversed from left to right or right to left results in a
different test tree and thus different transition cover sets. From the way the W set
is generated, as explained in Chapter 2, it can also be concluded that the order of
selecting pairs of states to obtain their separating sequence, as well as the
separating sequence chosen at each step for that state pair, affects the generated

63

set. We then conclude that the existence of small differences in the total length of
the test sequences, is logical and a sign of the applicability of our test method.

By comparing the average percentage of test sequence production time
improvement in different categories in Table 5.1 we find that with the increase in
the number of features or in other words the development of the product line, the
percentage of time improvement also increases. With the increase in the number
of features, the number of valid products also increases, and so the amount of
repetitive work performed by the W method for the common parts of the products
also increases. As a result, the difference in the production time of the test
sequences in the two methods increases and a higher percentage of improvement
is achieved.

It should be noted that the percentage of time improvement for small
production lines (modeled with F2SM with 10 states and 5 features) is negative (-
15% on average). When applying the proposed test method to larger production
lines, the amount of work needed to extract test cases for each product is
amortized over the number of products and improves the time compared to the
original method. Since product lines in the industry and the real world are large,
this issue is not considered a problem for the proposed test method and does not
limit its applicability.

5.4.1 The relationship between production line extension and percentage of
test time improvement

In order to show the effect of expanding the product line, or in other words
increasing the number of features, in improving the test time we designed an
experiment in which the classification of machines is done based on the number
of features. In this experiment we have three categories of machines. In each
category the number of states is equal to 25, the number of input and output
symbols is equal to 30 and 40, respectively, and the number of transitions labeled
with mandatory features is 20. There are 20 finite state machines in each category.
The result of applying the two test methods to these machines is shown in Table
5.2.

64

Table 5.2 Changing the comparison criteria with the increasing number of attributes.

Number of features
Average percentage of
length improvement

Average percentage of time
improvement

10 -0.6% 41%
12 -2.6% 47%
15 1.2% 54%

We note that the percentage of test case generation time improvement
increases with the increase in the number of features. It is worth noting that the
change in the total length of test cases is still insignificant. This experiment shows
the extensibility of our test method.

5.4.2 The influence of the commonality of the products on the proposed test
method

The more commonality of products in the production line, the less work is
required to obtain the test sequences of all products in our test method. This
happens because our method uses the sequences in the core of the product line
that are common to all products when selecting the sequences to form the P and
W sets if possible., As a result, the comparisons and the next necessary actions to
select the appropriate sequence are not performed, whereas the amount of product
commonality has no impact in the test with the W method. We develop an
experiment to illustrate this. We generate a number of F2SM in which the number
of states, the number of input and output symbols, and the number of attributes
are all the same namely, 25, 30, 40, and 12, respectively. In all machines, the
number of pairs of features in the requirement relationship is equal to 2 and the
maximum number of priorities defined between pairs of transitions is equal to 3.
However, the number of transitions labeled with mandatory features can be
different in each machine. For each machine, the ratio between the number of
these transitions and the total number of transitions was calculated as a
percentage. For machines with the same percentage of mandatory transitions, the
average percentage of improvement in test case production time for all products is
shown in the graph in Figure 5.1. The percentage of the number of transitions
labeled with mandatory features actually indicates the amount of commonality of
the products of the product line. As can be seen, increased commonality results in
improved time to produce test cases using our method compared to the W method.

65

Figure 5.1 Increase in time improvement with the increasing commonality of product line
products

66

Chapter 6

Conclusions

In this thesis we developed a model-based test for reactive software product lines.
To perform a model-based test it is necessary to have a model of the expected
behavior of the system under test. For this purpose we first introduced the concept
of variability into the finite state machine and obtained an extension of this
machine to model the system characteristics. To do that we labeled each transition
of the machine with a feature of the product line. We defined priority between
some transitions if necessary, according to the product line feature model. To
obtain the finite state machine describing each product we removed the transitions
from the machine describing the entire product line which are labeled with
features not present in that product, as well as the transitions with low priority. As
a consequence a number of states may become unavailable from the start state, so
we removed them and obtained the equivalent minimum machine.

We then modified the W test method, which is an efficient method for testing
finite state machines, such that we can use it for software product line testing. For
this purpose we provided new algorithms for building the sets of covering
transitions and separating sequences.

Existing model-based testing methods of the software product line have not
used so far formal models to describe system specifications. The model-based
testing presented in this thesis models the system specifications with formal
methods. In the proposed test method all required test items are produced from the
model describing the entire product line, and then they are customized to test each
product. According to the results of the tests performed to evaluate our method
the total length of the test cases of the product line is almost the same in both the
proposed and original methods, but the production time of the test cases has been
significantly reduced. Therefore, we conclude that the proposed test method is
successful in reducing the cost of the test. We believe that this is due to the high
degree in which our method reuses data used in constructing the tests.

67

6.1 Future work

One of the other methods of testing finite state machines is the Wp method. This
method is slightly different from W test method and it reduces the length of the
test cases. We believe that the Wp test method can also be changed to test
software product lines, and thus a yet more efficient test method can be obtained.

The amount of researche on component-based software engineering is
increasing. Shortening the development process and reducing costs are important
goals in this field. One idea supporting this goal is to reuse components in
different applications after they are developed and tested. A large reactive system
can thus be obtained from the combination of smaller components. Given that
each component is described by a finite state machine, a reactive system can be
modeled as the combination of its components. Such a setup suggests that a
theory of compositional model-based testing of finite state machines (that is, a
method of obtaining global test cases based on the component tests) is worth
exploring.

68

Bibliography

[1] ISO/IEC 26550:2015 - Software and systems engineering — Reference model
for product line engineering and management

[2] G. Bockle K. Pohl and F. van der Linden. Software Product Line Engineering:
Foundations, Principles and Techniques. Springer-Verlag Berlin Heidelberg,
2005.

[3] A. Fantechi and S. Gnesi. Formal modeling for product families engineering.
In Software Product Line Conference (SPLC ’08), 2008.

[4] S. Khurshid E. Uzuncaova and D. Batory. Incremental test generation for
software product lines. IEEE Transactions on Software Engineering, 36(3):309–
322, 2010.

[5] E. Engstrom and P. Runeson. Software product line testing - a systematic
mapping study. Information and Software Technology, 53:2–13, 2011.

[6] K. Pohl A. Reuys, E. Kamsties and S. Reis. Model-based system testing of
software product families. In 17th International Conference on Advanced
Information Systems Engineering, pages 519–534, 2005.

[7] J. Tretmans. Model based testing with labelled transition systems. Formal
Methods and Testing, 4949:1–38, 2008.

[8] J.-P. Katoen M. Leucker and A. Pretschnerl M. Broy, B. Jonsson. Model-
Based Testing of Reactive Systems: Advanced Lectures. Springer-Verlag Berlin
Heidelberg, 2005.

[9] T.S. Chow. Testing software design modeled by finite-state machines. IEEE
Transactions on Software Engineering, 4(3):178–187, 1978.

[10] D. Lee and M. Yannakakis. Principles and methods of testing finite state
machines-a survey. PROCEEDINGS OF THE IEEE, 84(8):1090–1123, 1996.

69

[11] A. Gill. Introduction to The Theory of Finite State Machines. McGraw-Hill
Book Company, 1962.

[12] F. Belina and D. Hogrefe. The ccitt specification and description language
sdl. Computer Networks and ISDN Systems, 16(4):311–341, 1989.

[13] M. A. Babar L. Chen and N. Ali. Variability management in software
product lines: A systematic review. The 13th International Software Product Line
Conference (SPLC 2009), (13):81–90, 2009.

[14] J. A. Hess W. E. Novak K. C. Kang, S. G. Cohen and A. S. Peterson.
Feature-oriented domain analysis (foda) feasibility study. In Carnegie-Mellon
University Software Engineering Institue, 1990.

[15] H. Gomaa. Designing Software Product Lines with UML: From Use Cases to
Pattern-Based Software Architectures. Addison Wesley, 2004.

[16] G. Halmans S. B. Gnter, S. Buhne and K. Pohl. Modeling dependencies
between variation points in use case diagrams. In In Proceedings of 9th Intl.
Workshop on Requirements Engineering - Foundations for Software Quality,
pages 59–69, 2003.

[17] S. Segura D. Benavides and A. Ruiz-Cortes. Automated analysis of feature
models 20 years later: A literature review. Information Systems, 35(6):615–636,
2010.

[18] S. Helsen K. Czarnecki and U. Eisenecker. Formalizing cardinality-based
feature models and their specialization. Software Process: Improvement and
Practice, 10:7–29, 2005.

[19] K. Czarnecki. Generative Programming: Principles and Techniques of
Software Engineering Based on Automated Configuration and Fragment-Based
Component Models. PhD thesis, Technical University of Ilmenau, 1998.

[20] D. Batory. Feature models, grammars, and propositional formulas. Software
Product Lines (SPLC 2005), 3714:7–20, 2005.

[21] Mohd-Shafie, M.L., Kadir, W.M.N.W., Lichter, H. et al. Model-based test

70

case generation and prioritization: a systematic literature review. Softw Syst
Model 21, 717–753, 2022.

[22] D. Harel and M. Politi. Modeling Reactive Systems with Statecharts: The
statemate Approach. McGraw-Hill, 1998.

[23] U. Nyman K. G. Larsen and A. Wasowski. Modal i/o automata for interface
and product line theories. In Proceedings of the 16th European Conference on
Programming, pages 64–79, 2007.

[24] U. Nyman K. G. Larsen and A. Wasowski. Modeling software product lines
using colorblind transition systems. International Journal of Software Tools for
Technology Transfer, 9(5):471–487, 2007.

[25] P. Schobbens A. Legay A. Classen, P. Heymans and J.F. Raskin. Model
checking lots of systems: Efficient verification of temporal properties in software
product lines. In Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering, pages 335–344, 2010.

[26] A. Fantechi and S. Gnesi. A behavioral model for product families. In
Proceedings of the 6th joint meeting of the European Software Engineering
Conference and the ACM SIGSOFT symposium on the foundation of software
engineering, pages 521–524, 2007.

[27] D. Clarke and J. Proenca. Feature petri nets. In FMSPLE’10, 2010.

[28] M. Leucker A. Gruler and K. Scheidemann. Modeling and model checking
software product lines. In FMOODS ’08: Proceedings of the 10th IFIP WG 6.1
international conference on Formal Methods for Open Object-Based Distributed
Systems, pages 113–131, 2008.

[29] M. Leucker A. Gruler and K. Scheidemann. Calculating and modeling
common parts of software product lines. In Software Product Line Conference,
pages 203–212, 2008.

[30] R. Milner. Communication and concurrency. Prentice-Hall, 1989.

[31] H. Gomaa and E. M. Olimpiew. Model-based test design for software

71

product lines. In SPLiT 2008- Fifth International Workshop on Software Product
Line Testing, 2008.

[32] M. Kim S. Kang, J. Lee and W. Lee. Towards a formal framework for
product line test development. In Proceedings of the 7th IEEE International
Conference on Computer and Information Technology, pages 921–926, 2007.

[33] S. Mishra. Specification based software product line testing: a case study. In
Proceedings of the Concurrency: Specification and Programming Workshop,
pages 243–254, 2006.

[34] M. Roggenbach T. Kahsai and B. H. Schlinglof. Specification-based testing
for software product lines. In Sixth IEEE International Conference on Software
Engineering and Formal Methods (SEFM 2008), pages 10–14, 2008.

[35] D. Jackson. Software Abstractions: Logic, Language and Analysis. The MIT
Press, 2006.

[36] F. Roessler J.J. Li, B. Geppert and D.M. Weiss. Reuse execution traces to
reduce testing of product lines. In Proceedings of the International Workshop on
Software Product Line Testing, 2007.

[37] S. Reis E. Kamsties, K. Pohl and A. Reuys. Testing variabilities in use case
models. In Software Product-Family Engineering: 5th International Workshop,
2003.

[38] F. Robler B. Geppert, J. Li and D. M. Weiss. Towards generating acceptance
tests for product lines. In 8th International Conference on Software Reuse (ICSR
’04), 2004.

[39] E. M. Olimpiew and H. Gomaa. Model-based testing for applications derived
from software product lines. SIGSOFT Softw. Eng. Notes, 30(4):1–7, 2005.

[40] J. McGregor. Testing a software product line. Technical report, CMU/SEI,
2001.

[41] J. Offutt and A. Abdurazik. Generating tests from uml specifications. In 2nd
Intl. Conference on UML, 1999.

72

[42] M. Vieira J. Hartmann and A. Ruder. Uml-based approach for validating
product lines. In Intl. Workshop on Software Product Line Testing (SPLiT), pages
58–64, 2004.

[43] A. Bertolino and S. Gnesi. Pluto: A test methodology for product families. In
5th Intl. Workshop on Product Family Engineering (PFE-5), 2003.

[44] R. M. Keller. Formal verification of parallel programs. Commun. ACM,
19(7):371–384, 1976.

	2.3 Product line engineering ……………………………………….
	Model-based testing in single system development ………………..…..

